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Abstract

This thesis explores the evolution of galaxies from the onset of star formation shortly after the

Big Bang until the present day. Particular emphasis lies on the redshift range z = 1.4− 2.5, the

so-called “redshift desert”, as it coincides with the peak epoch of cosmic star formation activity

and mass assembly.

Most of the information about galaxies and their evolution arrives in the form of their inte-

grated light, i.e. the conglomeration of light emitted by stars of various ages and metallicities.

In order to interpret the observed spectra and magnitudes, and to extract the physical param-

eters we therefore require models. This holds true in particular for galaxies too faint to target

them spectroscopically, and for which redshifts and physical parameters derived from only their

photometry is the only feasible way to study them in more detail.

This thesis is concerned with such models, and describes how GALEV evolutionary synthesis

models describe the spectral and chemical evolution of galaxies, accounting for gaseous emission

and the increasing initial abundances of successive stellar generations, how they compare to

observations and what we can learn from their application. Based on a large model grid, covering

all observed galaxy evolution stages, I find that sub-solar metallicities have significant impact

on the spectra of galaxies, and can lead to systematic errors and biases if not accounted for. A

comparison of models with different metallicities furthermore reveals that photometric redshifts

are also systematically biased if sub-solar metallicities are not properly accounted for. I also note

that even a small mass-fractions of young stars can dominate the overall spectrum, leading to a

large underestimation of the mass and age of the stellar population.

The models explain not only the colour evolution of galaxies observed at a range of redshifts,

but also their physical parameters. I show that with magnitudes in only a few bands we can

successfully explain not only the masses of galaxies, but also their star formation rates and,

where available from observations, their metallicities. If additional data are available, the grid

of models can be used to refine colour selection criteria and to break degeneracies, e.g. between

dust-reddened actively star-forming galaxies and intrinsically old, passively evolving galaxies.

Using gazelle, a photometric redshift code that is purpose-tailored to harmonise with these

models, I can extract accurate redshifts and a wealth of physical parameters from the largest ever



2 Abstract

sample of observed multi-wavelength photometry of galaxies. I then compare our findings with

semi-analytical models that trace the evolution of individual galaxies based on cosmological

simulations. In my sample I find a significant population of high-mass galaxies that is not

accounted for by this class of models. Furthermore a small percentage of massive, yet star-

forming galaxies challenges our idea on how these galaxies form and evolve.

In an appendix to this thesis I present a complementary approach to reconstruct the evolution of

galaxies, using star clusters as tracers. I introduce a new technique to break the age-metallicity

degeneracy and obtain individual ages and metallicities for a sample of globular clusters, reveal-

ing a merger of two Sb/Sc-type spirals 2 Gyrs ago in NGC 4570, a lenticular galaxy in the Virgo

cluster. Also in the appendix I show that, at least in the studied galaxy Arp 78, the initial mass

function conforms with our assumptions and does not change in low-density environments as

recently predicted.

Although studies of galaxy evolution are a major field in astronomy, there is still a lot more to be

done to reveal the inner workings of these island universes, and this thesis also addresses how

to continue and improve the work presented herein.



Chapter1
Introduction

Groundwork and motivation



4 Chap. 1: Introduction, groundwork and motivation

Modern astronomers have specialised in a large number of topics, ranging from terrestrial and

solar physics, stellar astrophysics, astro-particle physics to cosmology. They all pursue the goal

of finding out how the universe and all its components, including humans and their cosmic

home, the Milky Way, have evolved over cosmic time and turned into the beauty we observe

in our night sky. This thesis, titled “Galaxy evolution and the redshift desert”, focuses on the

evolution of galaxies from the formation of their first stars shortly after the Big Bang to the

present day.

I will start with this introduction to motivate a little closer why I am and astronomers more

generally are interested in galaxies, what galaxies are at all, and point out some open questions

that motivated the work leading up to this thesis. I will also present a short overview over

the further content of this thesis, before presenting the work I have done so far and that I am

planning to continue in the future.

In the following I will use both terms Milky Way and Galaxy (with capital G) when I mean our

own galaxy, while galaxy (with small g) means galaxies in general.

1.1 The history of galaxy research in a nutshell

The term galaxy originates from “γαλακτoς”, the greek word for “milk” which refers to the

milky appearance of our own galaxy, the Milky Way. While in ancient Greece this appearance

was believed to have mythological origins, philosophers soon started to link the Milky Way to

stars in the sky. However, not until 400 years ago when Galileo Galilei first pointed his early

telescope at the night sky could we attribute the milky glow to myriads of stars too faint for the

naked eye to resolve (Galilei, 1610).

Over time more and more substructure was found to be part of the Milky Way, ranging from

stellar associations consisting of only a few stars to clusters of stars with several tens to hundreds

of stars to the magnificent globular clusters containing tens of thousands and up to millions

of stars. Over the years the techniques to measure the brightnesses of stars were constantly

improved, first with photographic observations, e.g. as part of the Bonner Durchmusterung by

Argelander (1859-1903) and later the National Geographic Society – Palomar Observatory Sky

Surveys (Wilson, 1952), later using photo-electric detectors and, at the present, Charged Coupled

Devices, as used e.g. in the Sloan Digital Sky Survey, (Gunn et al., 1998). These new techniques

allow astronomers to reliably derive the brightnesses or magnitudes of stars as well as their

colours to ever increasing accuracy. With these data at hand we start to learn more about how

stars evolve by comparing the colour-magnitude diagrams of star clusters. Furthermore star

clusters allow us to study stellar evolution from birth to death and also the distribution of stellar
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masses, the Initial Mass Function. This holds up to the present day, when ever better quality

observations taken with both ground-based and space-borne telescopes constantly challenge our

understanding of these stellar powerhouses.

While the study of stars dates back at least to the stone-age as indicated by early astronomical

observing sites such as Stonehenge and archaeological artifacts such as the Nebra star disk, the

study of galaxies is a significantly younger field of research. Early observations of galaxies by

pioneers such as Charles Messier and William Herschel denominate them as “nebulae” or “spiral

nebulae” in the belief that these nebulae are part of our own Milky Way. Only in the early 1920’s

a number of astronomers (e.g. Opik, 1922; Lundmark, 1925 and references therein; Hubble,

1929b) independently derived the distance to the great Andromeda nebula and found it to well

exceed estimates of the size of our own Milky Way (see, e.g., the “Great Debate”1 between Curtis,

1921 and Shapley, 1921) confirming that many of these nebulae are indeed “island universes”

(Kant, 1755) outside our own Galaxy. The Milky Way, its companion the Andromeda galaxy

and local galaxies in general are of immeasurable value to astronomers: Their proximity allows

for detailed in-depth studies of the physical processes at work, and the fossil records of their

formation and evolution uncovered by these studies allows a detailed view into the very distant

past when the universe was still in its infancy.

In the same decade, it was Edwin Hubble and his co-workers to find a “A relation between

distance and radial velocity among extra-galactic nebulae” (Hubble 1929a, also see Hubble &

Humason 1931, 1934). This work laid the foundation for nearly all later studies of galaxies, as it

offers a possibility to determine the distance to any galaxy for which we can estimate a velocity

via its redshift. While the common practice of deriving redshifts from identified emission-

and/or absorption lines in spectra works extremely well for nearby and therefore reasonably

bright galaxies, this approach gets increasingly difficult for more distant and faint galaxies. We

will come back to some of these difficulties below in Sect. 1.5.

1.2 Our Milky Way

As mentioned above we know since four centuries that our Milky Way is made up of stars, that

at least in part conglomerate in star clusters and are distributed in an elongated, flat structure

that we observe as the Milky Way. A closer look brings up more features, such as large patches

of lower stellar density that are obscured by dust. These features can be clearly seen in the top

panel of Fig. 1.1, showing an all-sky optical image of the Milky Way. The same region taken

in the near-infrared by the 2 Micron All-Sky Survey (2MASS, Skrutskie et al., 2006) can pierce

1The NRC (National Research Council) transcripts of the “Great Debate” can be found at
http://antwrp.gsfc.nasa.gov/diamond_jubilee/1920/cs_nrc.html

http://antwrp.gsfc.nasa.gov/diamond_jubilee/1920/cs_nrc.html
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Figure 1.1: All-sky images of our Milky Way in the optical (top panel) and the near-infrared by 2MASS (lower panel).
Images courtesy of Axel Mellinger (optical) and 2MASS/IPAC/Caltech (near-infrared).

through this dust and reveal the true structure of our Milky Way, shown in the lower panel of

Fig. 1.1. In addition to the disk that we recognise as “Milky Way”, our Galaxy also contains a

bulge, a central, spheroidal component.

A more abstract version of these figures is given in Fig. 1.2, showing the four major components

of our Milky Way: Bulge, thin and thick disks and halo. Most of the gas and dust are concen-

trated into a thin disk, and therefore the thin disk also marks the location where most young

stars are formed. These young stars show a wide range of stellar masses that can, for masses

comparable to our sun’s mass and above, be well described by a power-law (Salpeter, 1955;

Kroupa, 2001; Chabrier, 2003), with many more low-mass stars being formed than high-mass

stars. This initial mass function (IMF) is found to show very little variation within and across

different galaxies, but this might not hold for extreme environments, and a range of authors

have begun to investigate these issues (e.g. Weidner & Kroupa, 2006; Boissier et al., 2007; Meurer

et al., 2009). Appendix B present the results of such a study, looking in detail at the properties

of the IMF in the relatively nearby galaxy Arp 78.

Of particular interest for the evolution of galaxies are the massive stars. Their high masses

lead to high luminosities, making them sign-posts for active, ongoing star formation out to

large distances. They also use up their hydrogen fuel supply rather quickly within only several

million years (e.g. Bertelli et al., 1994; Marigo et al., 2008) and then end their life in a supernova

explosion, returning a significant fraction of their mass and in particular the end-products of

their nuclear burning processes in form of heavier elements (e.g. Woosley & Weaver, 1995) to the
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Figure 1.2: Sketch of the structure of
our Milky Way: A thin disk, embedded
into a thick disk, a central bulge and a
surrounding stellar halo.

surrounding inter-stellar medium (ISM). This process leads to a chemical enrichment of the gas

that can then cool and form new stars, and it is the details of this enrichment process that can

be used to reconstruct past star formation in our and external galaxies.

The thin disk is embedded in a more extended structure, the thick disk. The main difference,

in addition to different scale heights between the disks, is that stars in the thick disk are older

than stars in the thin disk, and as the gas they were formed from in the past had undergone

less enrichment, they have lower metallicities (e.g. Ak et al., 2007). In the centre of our Galaxy

we have the bulge, a roughly spherical structure that consists of old and therefore red stars. All

these three components, thin disk, thick disk and bulge, are in turn embedded into a large halo.

Stars in the halo are among the oldest and most metal-poor stars we can find in the Galaxy (e.g.

Ivezić et al., 2008), and so are the stars in the globular clusters that also inhabit the halo (Harris,

1996). This suggests that the stars in the halo were the very first to be formed very early in the

history of the universe and shortly after the Big Bang (Eggen, Lynden-Bell, & Sandage, 1962;

Salaris & Weiss, 2002; De Angeli et al., 2005; Marín-Franch et al., 2009; Marks & Kroupa, 2010).

This structure and their respective stellar populations they are made of also imply different

formation scenarios: The stellar halo and bulge formed very early on in a relatively short period

of time, with stars in the thick disk following shortly after that. The stars in the thin disk, on

the other hand, form over an extended period of time until the present day. These different

star formation histories determine the integrated light of the galaxy at each moment in time

and also have a share in determining its subsequent evolution, and it is this very evolution that

astronomers strive to decipher.
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Figure 1.3: Hubble’s tuning fork to classify galaxies into early-type, elliptical galaxies, lenticular galaxies as link to the
late-type, spiral galaxies. Depending on the presence of a central bar spirals are classified as regular or barred spirals.
Image courtesy: NASA and ESA, adopted by the author.

1.3 Hubble and the galaxy types

Now that we have discussed the structure and stellar populations of our own Milky Way in some

detail, we will have a closer look at the variety that nearby galaxies have to offer.

Edwin Hubble was among the first trying to bring some order into the plethora of galaxy mor-

phologies we observe in the nearby universe alone. His classification (Hubble, 1926), that was

later refined and expanded by de Vaucouleurs (1959, 1963), is shown in Fig. 1.3. In his “Tun-

ing Fork” galaxies are classified morphologically on the basis of the prominence of the central

bulge and the existence and appearance of spiral arms. Galaxies showing a smooth, featureless

appearance and round or ellipsoidal shapes are called ellipticals or E-type galaxies. The suffix

attached to their type (e.g. E3) gives their apparent axis-ratio. For historical reasons, elliptical

and lenticular galaxies are often referred to as early-type galaxies, whereas spiral galaxies, oc-

cupying the right-hand side of the tuning fork, are labelled as late-type galaxies. Located at the

interlink between ellipticals and spirals are the lenticular galaxies. Their light is dominated by

the central bulge, but they also show signs of a stellar disk, but both bulge and disk are smooth.

Unlike ellipticals, late-type galaxies show a spiral-like structure of two or more separate arms

in their optical images. Different spiral types, ranging from Sa through Sc, again classified as

early-type and late-type spirals, are classified by a range of interrelated features such as the
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prominence of their central bulge, the bulge-to-disk or bulge-to-total (light) ratio (increasing

from Sa-Sc) or arm pitch angle (more tightly wound arms for the Sa’s to looser arms for Sc’s).

In addition to these spiral arms, spirals can also contain a bar, a central elongated structure.

de Vaucouleurs (1959) later added two more spiral classifications: Sd galaxies are pure disks,

and do not contain any bulges, while Sm-type galaxies show neither bulge nor a definite spiral

structure, linking them to the Irregular galaxies.

The sequence from early-type ellipticals to late-type spirals also involves a continuum in both

colours and, as a proxy of stellar mass, absolute luminosities in the sense that earlier-type galax-

ies are in general brighter and redder then later-type galaxies. This can naturally be explained

with the stellar population mix causing the light: As in the Milky-Way, stars in bulges are on

average older than stars in disks. Furthermore early-type galaxies do not show signs of signif-

icant ongoing star formation (they are sometimes also referred to as “red and dead”), while in

particular later-type spirals have ongoing star formation as shown by UV and Hα emission, orig-

inating in Hii regions surrounding hot and short-lived massive stars. In addition to this purely

morphological Hubble sequence we can therefore define an analogous spectral sequence, using

spectral features instead of morphology. As morphologies are only discernible for relatively

nearby galaxies, these spectral types will become important in the course of this thesis when it

comes to modelling more distant galaxies, their spectra and spectral evolution with time.

Despite all its successes in bringing some order into the zoo of galaxy shapes, the Hubble Tuning

Fork as shown in Fig. 1.3 misses several important galaxy classes. The first of these is the class of

dwarf galaxies, the by far most frequent galaxy type. Dwarf galaxies, only defined to have low

luminosities as compared to the “normal” Hubble types, again can be separated into early-type

dwarfs (dwarf ellipticals [dE], dwarf spheroidals [dSph]) and late-type dwarf Irregulars (dIrrs)

and Blue Compact Dwarf Galaxies (BCDGs). Galaxies with active nuclei (active galactic nuclei,

AGN), powered by accreting black holes at their centres, are another distinct class with several

sub-classes too numerous to be detailed here, but these AGN are often hosted by otherwise

unremarkable galaxies on the Hubble scheme.

The last group not described by any regular Hubble type are peculiar galaxies. This group con-

tains morphologically irregular galaxies like the Magellanic clouds in the direct vicinity of the

Milky Way. It also contains galaxies in the process of merging with a second galaxy (e.g. M51),

with (tidal) arms (e.g. the Antennae NGC4038/39, the Tadpole Galaxy UGC10214 or The Mice

NGC4676; also see Fig. 1.4), or the like. Their peculiar shapes are often caused by gravitational

interactions with a nearby companion. These interactions dramatically affect all of the galaxies’

properties. For instance, a merger of two galaxies not only combines the light of both pro-

genitors, but forms a remnant with a different morphology (typically of earlier type), possibly

featuring a large extended tidal structures such as tails, ripples and shells (Toomre & Toomre,
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Figure 1.4: A small subset of interacting galaxies, observed with the Hubble Space Telescope. Top: Tadpole Galaxy
(courtesy of NASA and B. Preston [STScI]); middle left: M51 (courtesy of NASA, ESA, S. Beckwith and the Hubble
Heritage Team); middle right: Antennae (courtesy of Brad Whitmore [STScI] and NASA); bottom: The Mice (courtesy
of NASA, H. Ford [JHU] et al, the ACS Science Team, and ESA).

1972; Heyl et al., 1994; Barnes & Hernquist, 1996; Mihos & Hernquist, 1996; Weil & Hernquist,

1996; Cox et al., 2006, but also see Springel & Hernquist, 2005). If at least one of the galaxies

contained some gas, this gas can be stirred up during the interaction and trigger a starburst (e.g.

Mihos & Hernquist, 1996), a short phase of enhanced star formation [SF] activity. This starburst

also increases the luminosity of the galaxy, making it visible out to large distances or redshifts,

and also leads to blue colours and spectra as consequence of the immense number of newly

formed massive stars. The enhanced SF also leads to an increased formation rate of massive

star clusters (Larsen, 2002; Bastian, 2008), and this young star cluster population can then serve

as witness of the galaxy’s eventful past, allowing us to reconstruct its formation history. In the

framework of this thesis, this “astro-archaeological” approach has successfully been applied to

the nearby lenticular galaxy NGC 4570, a member of the Virgo galaxy cluster (see Fig. 1.5), and
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Figure 1.5: 2MASS image of our Milky Way and its surrounding environment, showing galaxies in the local group and
the nearby large scale structure consisting of a range of galaxy clusters.
Image courtesy: Tom Jarrett (IPAC/Caltech).

the details and results from this project are given in Appendix A.

In Fig. 1.5 we show the 2MASS all-sky image of the Milky Way and its surrounding large-

scale structure. The image clearly shows that our Galaxy, together with the Large and Small

Magellanic clouds (LMC/SMC), the Andromeda Galaxy M31 and the Triangulum Galaxy M33

form the Local Group with an extent of ≈ 1Mpc. At larger distances the large-scale structure is

dominated by a range of galaxy clusters, with the Virgo and Fornax clusters being the closest in

the northern and southern hemisphere, respectively.

Galaxy clusters add a whole new perspective to the evolution of galaxies. Galaxies in the field

evolve mostly isolated or at most undergo few interactions with nearby companions. Galaxy

clusters keep forming and growing by accretion of field galaxies. Galaxies in clusters, however,

live in swarms of numerous other, close-by galaxies. They feel the deep gravitational potential

caused by luminous and dark matter in the cluster. Furthermore, they interact with the hot,

ionised gas that forms the intra-cluster medium (ICM). These interactions can affect the evolution

of a galaxy in a number of ways: As it travels through the cluster, the ICM interacts with the

gas within the galaxy, leading to gas-loss due to ram-pressure stripping. As the gas-reservoir

diminishes, star formation can no longer be sustained and the galaxy is slowly transformed

into a red and dead early type galaxy. On the other hand frequent and fast fly-by interactions

with nearby galaxies also disturb the gas within the galaxy and are able to shred off stars in
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Figure 1.6: Small cutouts from the Hubble Ultra Deep Field, illustrating the immense number of galaxies found in each
small patch of sky. It also clearly shows the variety of shapes these galaxies have, ranging from spirals similar to the
local universe (e.g. in the top right panel) to small and scraggy (several examples in the lower right panel).
Image Courtesy: NASA, ESA, S. Beckwith (STScI) and the HUDF Team

the outskirts. As this process primarily destroys the disk but leaves the bulge, located deeper

within the galaxy’s gravitational well, unaffected, it also leads to the transformation of late-type

into early-type galaxies. Both ram-pressure stripping and galaxy-galaxy interactions can trigger

a starburst as long as a galaxy is still gas-rich. All these processes together obviously account for

a significant transformation of an originally spiral-rich field galaxy population with lots of gas

and ongoing SF to an ultimately E- and in particular S0-rich cluster galaxy population with little

gas and SF. In addition to the work I did towards this thesis I was involved in a study aimed at

explaining a certain type of galaxies that are observed in a particular state of this transformation

process: their spectra show strong Balmer absorption lines, robust signs of rigorous recent SF,

but no emission lines that would indicate ongoing SF. The results of this study are published in

Falkenberg, Kotulla, & Fritze (2009a) and Falkenberg, Kotulla, & Fritze (2009b), and the abstracts

of these two papers can be found in sections D.1.1 and D.1.2 in the appendix to this thesis.
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1.4 The high(er) redshift universe

Now moving our view to more distant galaxies, such as first done in the Hubble Deep Field

and later the Hubble Ultra Deep Field (Fig. 1.6), we see that more and more galaxies show signs

of active star formation, as indicated by the presence of emission lines and/or blue colours.

Furthermore the number of galaxies that show signs of interactions (see, e.g., the galaxies just

towards the lower right of the centre of the top-left panel or the blue, clumpy galaxies in the

bottom right panel of Fig. 1.6) increases as we look back in time towards earlier phases of the

universe. This suggests that galaxies are likely to be formed bottom-up, by hierarchical merging

of small, more dwarfish galaxies that slowly built up the large galaxies we observe in the local

universe.

Further evidence for this scenario comes from large cosmological N-body simulations, such as

the Millennium simulation (Springel et al., 2005). These simulations start from initial conditions

derived from the cosmic microwave background (CMB), the oldest signature of the Big Bang that

is currently directly observable2, and can successfully reproduce a large number of observations

in the local universe. However, one important caveat of these simulations so far is that they

only include dark matter, and although this means they account for the bulk of the mass in the

universe, they still lack the level of detail necessary to fully reproduce the wealth of data we can

observe today. Fig. 1.7 shows snapshots of a small region in the Millennium simulation at four

different times, ranging from very early (210 Myr) after the Big Bang in the top left, 1 Gyr (top

right), and 4.7 Gyr (bottom left), to the present day (13.7 Gyr) in the bottom right.

To overcome this drawback and in order to make these simulations comparable to observations

of the “ordinary”, non-dark matter observed in the form of stars and galaxies, several groups

have developed semi-analytical models of galaxy formation (White & Frenk, 1991; Kauffmann

et al., 1993; Cole et al., 1994, 2000b; Bower et al., 2006; De Lucia & Blaizot, 2007; Lacey et al.,

2008; Fontanot et al., 2009). These combine the information on the merging and building of dark

matter halos from the cosmological simulations with descriptions for star formation, fueling of

the central AGNs, and their resulting feedback processes on the gas in and around the galaxies

(see Fig. 1.8 for an illustration of this process). These models use recipes for gas cooling, SF,

AGN growth and feedback from both, as much in agreement as possible with observations in

the relatively local universe. They include a number of free parameters that need to be adjusted

and their validity has to be extrapolated far into the early universe.

In the first five chapters of this thesis we describe, as a complementary approach, a compre-

hensive study of the evolution of various types of galaxies, starting from the relatively nearby

universe and extending out to redshifts at which the universe was still young, less than 10 per
2Two more pieces of evidence for the Big Bang theory are the cosmic expansion as described by the Hubble law and

the relative abundance of elements up to Lithium as fossil end-product of primordial nucleosynthesis
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Figure 1.7: Snapshots of a small region of the Millennium simulation (Springel et al., 2005) at four different ages of 0.21
Gyr (top left), 1.0 Gyr (top right), 4.7 Gyr (bottom left) and 13.7 Gyr (bottom right).
Image courtesy: V. Springel et al.

cent of its current age. Our study is based in the largest ever observed sample and uses rel-

atively simple and thoroughly tested stellar population models. These models nowadays are

looking back on a long and successful history started by Tinsley (1967, 1968, 1972), subsequently

improved and refined (Bruzual, 1983; Guiderdoni & Rocca-Volmerange, 1987; Matteucci & Tor-

nambe, 1987; Fritze et al., 1989; Bressan et al., 1994; Fritze & Gerhard, 1994a; Prantzos et al.,

1994; Fioc & Rocca-Volmerange, 1997; Portinari et al., 1998; Silva et al., 1998; Leitherer et al.,

1999; Bruzual & Charlot, 2003; Anders & Fritze, 2003; Pipino & Matteucci, 2004; Chapter 2) and

are now widely applied throughout the astrophysical community. They all have in common that

they generally assume a simple, analytical description of the SFH of a galaxy, and then synthe-

sise the emitted light from a distribution of stellar masses, stellar evolution data and observed

and/or theoretical stellar spectral libraries. A detailed description of the model underlying many

of the results in this thesis is given in Chapter 2.
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Figure 1.8: Comparison of the underlying dark matter distribution (left panel) and the visible galaxy population (right
panel) inhabiting this distribution for one galaxy cluster in the Millennium simulation. The colours ranging from blue
to red correspond to the stellar population age of the galaxy from young to old.
Image courtesy: V. Springel et al.

1.5 The redshift desert and photometric redshifts

As mentioned above the star formation activity in galaxies in general increases towards higher

redshifts. However, this trend does not continue back to very young ages, as galaxies at these

early epochs were significantly less massive and, although very gas-rich, had only just started

their SF activity. The cosmic star formation history as measured by the star formation rate

density shows a peak roughly at redshift z = 2 when the universe was ≈ 1/5 of its current age

(Madau et al., 1996, 1998; Blain et al., 1999; Hartwick, 2004; Juneau et al., 2005; Reddy et al.,

2008). This epoch furthermore overlaps with the epoch of maximum QSO activity, a measure for

the growth rate of galaxies (Schmidt et al., 1995; Pei, 1995; Fan et al., 2001; Babbedge et al., 2006;

Brown et al., 2006; Richards et al., 2006). Unfortunately, this redshift range is hard to access with

current instruments on large telescopes: in order to obtain a redshift from an observed spectrum

one needs to identify spectral features, most commonly emission lines. Most of the strongest

features in the rest-frame optical spectral range are, for a redshift 2 galaxy, shifted into the

near-infrared and hence beyond the sensitivity range of optical spectrographs, the workhorses

of modern extragalactic research. At the same time, emission lines in the far-ultraviolet are not

redshifted far enough to reach into the optical window.

These mostly technical challenges gave rise to the term “redshift desert” (Cimatti et al., 2004;

Steidel et al., 2004), as very few galaxies with spectroscopic redshifts in the redshift range from

z = 1 . . . 2.5 were known. In the recent past efforts using NIR spectrographs on large telescopes

(e.g. Erb et al., 2003) or optical instruments that reach into the near-UV (see, e.g., Steidel et al.,

2004, for an overview) have partly overcome these difficulties, opening a window on this truly
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remarkable phase in the evolution of our universe. However, galaxies at high redshift not only

reside at immense distances, their flux furthermore gets stretched and decreased by a factor of

(1 + z) as result of their redshift. These two factors cause high-redshift galaxies to be faint, and

their spectra hence become both rare and often of low quality. Tremendous integration times on

the largest telescopes are therefore required to even detect these galaxies at z = 5− 7, let alone

to spread out their light over many detector elements as done in spectroscopy.

This difference in required telescope time can be nicely demonstrated with the 2 sq.deg. Cosmic

Evolution Survey (COSMOS)3: imaging in 5 broad-band, 13 intermediate-band and 3 narrow-

band filters “consumed” a total of 22 nights on SUBARU, an 8 m telescope on Mauna Kea,

yielding photometry for ≈ 2 million galaxies, and allowing for photometric redshifts with ac-

curacies as good as 1%. The spectroscopic follow-up, zCOSMOS, obtained spectra for a total of

37500 galaxies – less than 2% of the photometric sample, and with limiting magnitudes 4− 5

magnitudes brighter than what was reached with imaging – using 68 nights of VLT (same tele-

scope aperture, 8 m) telescope time. On top of all that comes the fact that spectroscopy does not

always yield a redshift (for instance in the case that the galaxy lies in the redshift desert), losing

a certain fraction of precious telescope time. Admittedly, some science questions can only be

answered with spectroscopy (dynamics and detailed abundance ratios are just two examples),

but for many science questions the photometric redshift approach is by far the more efficient

one.

In addition to these challenges, redshift furthermore stretches the wavelength by a factor (1 + z)

such that, with current instrumentation, only a very short rest-frame part of the spectrum can be

observed at a time. As a consequence, redshifts and galaxy properties such as SF rates are often

derived from just one single strong emission line, with considerable risk of misidentification.

The potential magnitude of this effect was demonstrated by Fernández-Soto et al. (2001) who

find that even in the best and most thoroughly checked redshift surveys 3% and possibly up to

14% of spectroscopic redshifts are incorrect, be it due to misidentified lines, blended objects or

faulty acquisition at the time of the observations; we will present one such case below.

In the present thesis these difficulties of deriving redshifts and physical parameters are overcome

by using a method that is becoming increasingly popular at a time where large astronomical sur-

veys, partly using dedicated survey telescopes, observe ever fainter galaxies in rapidly growing

numbers: Instead of using spectral features such as emission and/or absorption lines to deter-

mine a precise redshift, I obtain a photometric redshift. I compare the overall spectral shape, the

spectral energy distribution, to a grid of galaxy templates that cover a wide range in redshift,

and assign each galaxy with the spectral type and redshift of its best-matching template. For

this purpose I developed – from scratch – a completely new photometric redshift code, called

3data taken from the COSMOS web-site, http://cosmos.astro.caltech.edu

http://cosmos.astro.caltech.edu
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Figure 1.9: Examples of spectra for two
galaxies at either side of the redshift range
covered by the “redshift desert”. Observed
spectra are shown as grey lines, observed
photometric data-points and their respec-
tive uncertainties are shown with black cir-
cles; the blue solid line shows the best-fit
spectrum obtained via the photometric red-
shift fitting.

Spectroscopic redshift identification in
both cases is based on the location of
absorption lines.
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gazelle. It is tailored to work with galev models that include the full spectral and chemical

evolution of galaxies, and not only to derive redshifts as many other codes do, but also to ex-

tract the physical information from the observed photometry, fully and consistently accounting

for the often mutually dependent uncertainties. As dataset I compiled the largest ever catalog

from a large number of individual surveys covering more than a dozen deep fields, all with a

large wavelength basis covering at least the optical and near-infrared. For a large fraction of my

sample the covered spectral range extends even further than that, from far-ultraviolet at 0.15µm

to the mid-infrared at 8.0µm, a range that is totally unheard of when it comes to spectroscopy,

with exception of a handful selected and very nearby objects. With this data in hand I can now

efficiently constrain the type and redshift including their uncertainties for each of the galaxies.

The power of this photometric approach and a comparison to several observed spectra is shown

in the following Figs. 1.9, 1.10, and 1.11.

Fig. 1.9 shows, as grey line, the spectra of two galaxies at either side of the redshift desert, z = 1.4

and z = 2.8, taken from the spectroscopic follow-up study of the GOODS-South field, executed

using the Visible Multi Object Spectrograph (VIMOS) on the Very Large Telescope (VLT) at the

European Southern Observatory (Balestra et al., 2010). For comparison I also show the photom-

etry from the FIREWORKS catalog (Wuyts et al., 2008) as black data points, and the spectrum
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Figure 1.10: Same as Fig. 1.9, but for a
higher redshift galaxy at z = 4.43.

Spectroscopic redshift determined based
on the position of the Lyman Break.

corresponding to the best-fit to that photometry. The details on the data and the used method are

given in Chapter 6. This figure shows very clearly the two effects described above: The observed

spectral range only covers a narrow rest-frame wavelength window from 1400− 2800 Å (upper

panel) and 950− 1800 Å (lower panel). Unfortunately, this wavelength region is devoid of strong

emission features that, for galaxies at these redshifts, would be observable with typical optical

spectrographs, so that for these two galaxies the redshifts were established based on absorption

lines. This, however, is only feasible from high signal-to-noise ratio spectra, limiting its appli-

cation to the very brightest galaxies. These in turn are generally the least representative of the

underlying population (e.g. consider brightest cluster galaxies as representatives of the galaxy

population in the local universe) , heavily biasing conclusions based on these “tip-of-the-iceberg

galaxies”.

Now we turn our focus to the photometric data for these two galaxies. I show the photometry

in 16 bands, covering the observed near-UV through to the mid-infrared at 8.0µm. These cover

nearly the complete rest-frame far-UV to rest-frame near-infrared. This allows a significantly

better determination of the galaxy type, which in turn impacts on the dust extinction and hence

the dust-corrected star formation rate, stellar mass, and age of the stellar population than the

spectroscopic data alone.

The next Fig. 1.10 shows the observed spectrum of a galaxy at redshift z = 4.43, significantly

beyond the redshift desert. It is obvious that the quality as measured by the signal-to-noise

ratio is considerably lower than what I presented in the previous figure. The spectrum only

covers the immediate vicinity of the Lyman-α line at λrest = 1216 Å, which allowed for a redshift

determination based on the position of the Lyman-break. However, based on the spectrum alone

I would not dare to extract any physical information from this spectrum beyond the redshift and

maybe a star formation rate (if the dust content can be specified based on the UV slope). On the

other hand, using the available photometry alone also allowed for an accurate redshift estimate,

differing from the spectroscopic redshift by only ∆z = 0.019, corresponding to a relative error
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Figure 1.11: Same as Fig. 1.9, but for a
case with discordant spectroscopic and
photometric redshifts. For the observed
spectrum, the redshift is supposedly based
on the detection of the Mg iiλ2798 and
[O ii]λ3727 lines.
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∆z/(1 + zspec) = 3.5× 10−3, more than sufficient for most scientific applications. On top of that,

analysis of the photometry with gazelle also yields a galaxy type, i.e. a star formation history,

a stellar mass, star formation rate, stellar population age, stellar and gaseous metallicities, etc.

So far I have presented three cases where my photometric redshifts agree with the available

spectroscopic data, but due to the broader wavelength coverage of the photometric data much

more physical information can be extracted about the galaxy. I present in Fig. 1.11 a case where

spectroscopic and photometric redshift are in stark disagreement, with zspec = 0.738 and zphot =

2.762.

Unlike all previous plots, for this case the absolute normalisation of the observed spectrum does

not agree with the photometry for this object, suggesting that the spectrum and the photometry

refer to two different objects. This can, e.g., result from errors during acquisition when the

spectrograph slit is misplaced, during data reduction when slits are confused or misidentified,

or because of blending of multiple nearby sources. Although these errors are likely to be rare,

they pose a significant risk if not properly accounted for. Furthermore, the redshift measurement

is claimed to be based on the location of the Mg ii (λrest = 2798 Å, λobs(z = 0.738) = 4862 Å)

and [O ii] (λrest = 3727 Å, λobs(z = 0.738) = 6477 Å) lines. Detailed visual inspection of the

spectrum reveals the first line (Mg ii) to be marginally detected at most, while the second line,

supposedly [O ii], is undetected altogether, making this redshift classification, despite its claim

to be “secure” – or, in the authors words, “high quality, i.e. several emission lines and strong

absorption features are well identified” (Balestra et al., 2010) – everything but that.

In this context I particularly want to emphasise one aspect already noted in the Fernández-Soto

et al. (2001) study mentioned earlier: Unlike gazelle, many photometric redshift codes use

empirical templates instead of model templates, arguing that these better represent true galaxy

spectra. In many cases, these “empirical” templates are constructed from photometry and the

corresponding observed galaxy spectra, often available for a small number of comparably bright
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galaxies. Therefore, even a few mis-identified galaxy spectra have a significant negative effect,

not only on the resulting photometric redshift but in particular on the results and conclusions

based on these redshifts. To a somewhat lesser degree this also applies to the extrapolation

of templates to regions of the parameter space, either in redshift, colour range or apparent

magnitudes, that are not covered by the template set. This applies in particular to galaxies in the

redshift desert, i.e. with redshifts z = 1.4− 2.5, where spectroscopic redshifts in large numbers

and covering a representative fraction of the colour space (most galaxies in the redshift desert,

e.g., are star-forming, blue galaxies, allowing to derive a redshift from the Lyman-α line; up

until today there are only very few spectra of red galaxies in this redshift range), are still hard

to come by. All these reasons reinforced the decision to use not only photometric redshifts,

but photometric redshifts based on model templates that not only include all known types of

galaxies (with the exception of AGNs), but also fully account for the effects of galaxy aging,

emission lines and especially sub-solar metallicities.

1.6 Outline of this thesis

This thesis is structured into 9 chapters. After this introduction presenting previous work that

sparked the idea and laid the foundation for this thesis I will present the models I developed

and used for most of my work, the methods I have used to analyse the data and the conclusions

I have drawn. I finish this thesis (Chapter 7) with a summary of the conclusions and give a short

outlook on how I plan to build up on and extend the work done so far. I also attach in Appendix

C a pictorial description of my models, and in Appendix D a list of further publications I was

part of in addition to my own thesis-related work.

1.6.1 GALEV evolutionary synthesis models: Code, input physics and

web-interface

In Chapter 2 (published as Kotulla et al., 2009) I present the basis of this thesis, our galev evo-

lutionary synthesis models. The galev code allows to model spectra, magnitudes and colours,

and physical properties, such as stellar and gaseous masses, metallicities, stellar population ages,

based on a small number of input parameters. Crucial parameters that determine the evolution

of our simulated galaxies are the star formation history, i.e. the variation of the star formation

rate with time, and the stellar initial mass function, i.e. the relative number of stars of different

masses. For this modelling process galev uses a range of input physics such as data for stel-

lar evolution from stellar isochrones, stellar yields from nucleosynthesis calculations and stellar

spectra from theoretical stellar libraries.
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galev has been around for two decades now, building up on work started by Dr. Uta Fritze

and carried on by a large number of her previous diploma and PhD students. Over the years

the input physics was updated to compute spectra instead of only colours (Krüger et al., 1992),

to include a range of metallicities allowing for the chemical consistent modeling of galaxies

(Möller, 1995; Möller et al., 1997), and later to include emission lines (Anders & Fritze, 2003).

My contribution to galev was to include effects of redshift that allow to trace the cosmological

evolution of galaxies, for arbitrary choices of the cosmological parameters (H0, ΩM, ΩΛ and

formation redshift zform). In anticipation of the photometric redshift application (Chapters 5 and

6) I developed a tool to derive the redshift evolution of galaxies at an arbitrary stage of their

evolution (e.g. at the peak of star formation during a burst or at a fixed time before or after

the burst) from a grid of models that normally traces the time evolution of galaxies across all

these evolutionary stages. I also re-wrote a major part of the code to enable future upgrades,

such as an extended suite of isochrones from different groups (including effects of binary stellar

evolution and/or stellar rotation), newer and higher-resolution stellar libraries (see Fig. 7.1) and

variable initial mass functions, anticipating that galev will become one of the major population

synthesis codes in the years to come.

galev is the ideal tool for the science of this thesis, as it features two components that dis-

criminate it from similar codes such as the de-facto “industry standard” from Bruzual & Charlot

(2003): by using the input physics listed above for a wide range of metallicities it includes a

detailed treatment of the chemical evolution in a self-consistent way, fully accounting for the in-

creasing initial abundances of successive stellar generations. It furthermore includes continuum

emission as well as emission lines that also vary strongly with metallicity and are a significant

contributor to broad-band, intermediate-band and in particular narrow-band filters whenever

the galaxy is actively forming stars and hence contains a population of massive, young stars.

I detail the input physics that is currently used and also explain how the code works. In order

to be able to model galaxies both in the local and the distant universe, galev models have to be

calibrated, and I demonstrate this calibration process that allows us to simultaneously reproduce

spectra and colours, stellar masses, star formation rates, metallicities and mass-to-light ratios for

typical galaxies of a range of spectral Hubble types. Once calibrated on local galaxies galev

can – for any desired choice of the cosmological parameters – also be used to describe galaxies

out to the highest redshifts, consistently accounting not only for the cosmological, but also for

the evolutionary corrections appropriate for every individual galaxy type. In addition to the

applications presented in the course of this thesis I give several examples on how galev can be

and has been successfully used to study galaxies at a range of redshifts. To facilitate access to

our models I created a web-interface that, at the time of writing and after just over one year of

public access, allowed more than 150 researchers around the globe to run > 1500 models with

user-defined parameters. I conclude this chapter with a summary and a list of features I plan
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to improve or that already are in preparation in collaboration with Dr. Peter Anders as second,

active GALEV developer.

1.6.2 Evolutionary synthesis modelling of galaxies from nearby to high

redshifts

In Chapter 3 I present the model grid, computed with our galev models, that will serve as a

theoretical foundation for large parts of the remainder of my thesis. My model grid contains

five undisturbed models representing the spectral galaxy types E and Sa through Sd, all using

the chemically consistent treatment distinguishing galev from other codes. The term “undis-

turbed” means that these galaxies are described by a smooth star formation history and do not

undergo any starburst or star formation truncation events. These models are supplemented by

a large number of models undergoing a starburst, followed by a full or partial truncation of star

formation in the aftermath of the burst. Starbursts in this model grid are characterised by three

parameters: the time of the onset or peak of the burst, the decline time of the exponential decay

of the SFR during the burst, and the burst strength, i.e. the fraction of the gas-mass available at

the onset of the burst that is converted into stars during the burst.

I detail the evolution of spectra with time and redshift and remark on some interesting findings

from this modelling alone. For instance, even in the extreme case that a galaxy formed all its stars

in an instant at very high redshift, it would take until redshift z ≈ 3 for its spectrum to become

similar to a spectrum of an old elliptical galaxy in the early universe, explaining why the search

for this type of galaxies has not turned up any reliable candidates. I also particularly emphasise

the impact of evolutionary effects, i.e. the younger ages of galaxies in the early universe, and of

sub-solar metallicities on the spectra and spectral energy distributions of galaxies. Both effects

increasingly make galaxies brighter and bluer, leading to biased ages, masses and star formation

rates if not properly taken into account. I also show the evolution of the gas-to-total mass

fraction with time and redshift, and explain how accounting for this gas can help to understand

the observed discrepancy between stellar and dynamical masses at high redshifts.

Then I present the grid of starburst models and the evolution of their (specific) star formation

rates and chemical enrichment, and show that these models agree remarkably well with observa-

tions from several authors. The following analysis of the spectral evolution of starburst models

revealed, amongst other things, that even a small mass-percentage of young stars are sufficient

to dominate the integrated spectrum at nearly all wavelengths. If not accounted for, this can lead

to stellar masses that are underestimated by a factor of a few and up to a factor of 20-50 in the

most extreme cases. The colour evolution of our models revealed, that – as expected – ongoing,

active starbursts are necessary and do successfully reproduce the full range of blue colours ob-
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served out to high redshifts. On the other hand, post-starburst galaxies, i.e. galaxies for which

the starburst has occurred a while ago and that have only little or no ongoing star formation,

successfully explain the very red colours observed in galaxies at intermediate and high redshift,

even in the absence of additional dust reddening. Passive aging of these post-starburst galaxies

then defines a curve of maximum redness, again in excellent agreement with observations. I

finish this chapter with a short summary and an outlook to possible applications of this model

grid, some of which are presented in the following chapters.

1.6.3 Confronting model predictions with observations

In the following chapter (Chapter 4) I compare model predictions for the evolution of colours,

spectra and physical parameters like stellar masses, star formation rates and, as far as available,

metallicities to observations. As observational dataset I use results compiled from a large number

of publications. The aim is to establish a framework for comparing and linking the various

galaxy populations culled by each of the various colour selection criteria put forward by different

authors.

I start with Lyman Break Galaxies, blue and hence actively star-forming galaxies at redshifts

z = 1.5− 3, in the heart of the redshift desert, that are selected via their UGR colours. My grid

of galev models successfully reproduces their colour evolution over the full redshift range and

confirms that only actively star-forming galaxies with low dust reddenings (E(B − V) . 0.2)

fulfil the selection criteria in the targeted redshift range, with only small contributions from

nearby late-type galaxies. From their colours and observed magnitudes as a function of redshift

I conclude that Lyman Break Galaxies are likely progenitors of low-mass ellipticals or early-type

spirals, and indeed this is confirmed by their stellar masses, star formation rates and metallici-

ties. This interpretation, of course, only holds in the case of undisturbed evolution, i.e. without

interactions with other galaxies after the epoch of observation. Should interactions occur these

would lead to a galaxy, which in the local universe has an earlier type than what I predict from

my models.

BzK galaxies, named after the filters used for their selection criteria, also target the redshift

desert at z = 1.4 − 2.5. Using my model grid I can confirm the originally empirical colour

selection, but I also find some contamination from higher-redshift galaxies up to z = 3. Again

I find good agreement with galev predictions for E- and Sa-type galaxies based on observed

stellar masses, SFRs and near-solar metallicities. The starburst galaxies in my grid furthermore

explain the observed trend of an upper boundary to the star formation rate as function of stellar

mass, as well as comparably low-mass galaxies with extreme star formation rates.

Extremely Red Objects, another class of colour-selected galaxies, is observationally found and
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confirmed by my models to consist of two sub-groups, either dusty starbursts or genuinely red

galaxies with old stellar populations. Roughly one third of the latter is found to have strong Hδ

absorption lines indicating violent recent star formation activity. This is nicely explained by the

post-starburst models in my grid.

Distant Red Galaxies have received significant interest from various groups in the recent past.

Based on the physical parameters that I derive for these galaxies from the comparison with

GALEV models, I conclude that they are progenitors of local ellipticals. Surprisingly, both dusty

starbursts and passive galaxies that fulfil the colour selection criteria require very similar stellar

masses to yield the same observed K-band flux, despite the tremendous differences in the in-

trinsic stellar population. From my model grid I could derive a polynomial fit that allows the

derivation of a stellar mass from a given redshift and K-band magnitude, nearly independent of

galaxy type.

In all cases, I confirm the colour selection criteria derived by various independent methods

with my GALEV models. For several cases my models even allow me to pinpoint the origin of

contamination by galaxies outside the targeted redshift range, allowing to extend and refine the

criteria in those cases with photometry in additional bands.

I conclude the chapter with a short discussion of Luminous Red Galaxies, which are among the

most massive galaxies in the universe, and a summary.

1.6.4 Photometric redshifts and the metallicity bias

As mentioned already in the introduction, most of the galaxies we observe in modern astro-

nomical surveys are too faint to be studied spectroscopically. Consequently, the only way to

extract even the simplest information, the distance or redshift, from them is to rely on photo-

metric redshifts. This technique works well and reliably for brighter galaxies where additional

spectroscopic data is available to calibrate magnitudes and templates (see also Chapter 6). At

faint magnitudes, the realm of low-mass and hence low-metallicity galaxies, things are not that

simple. In Chapter 5 I use my own photometric redshift code gazelle, presented in detail in

Chapter 6, to study how sub-solar metallicities impact the obtained photometric redshifts.

For that purpose I simulate observations by taking model data of our chemically consistent,

undisturbed galaxy models, change their stellar mass, add some dust extinction and as a final

step add noise to simulate observational uncertainties. I then analyse these mock observations

with a matched set of templates that account for these sub-solar metallicities and also with

a template set that only uses solar metallicity models. While the matched set, as expected,

returns the correct redshift, the solar metallicity template set yields redshifts with comparable
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uncertainties, but those are biased towards too low values. This bias depends on the chosen

set of filters, the galaxy type and also on dust extinction, and can reach values of up to 50% of

the actual value. It also particularly affects relatively low redshift galaxies for which even small

redshift errors lead to large errors in the inferred physical parameters.

1.6.5 GAZELLE, a new photometric redshift code and its first applications:

Redshift distributions and stellar mass functions across many

deep-fields

Chapter 6 builds up on all the results from the previous chapters, and applies them to a large

sample of galaxies.

I start with presenting gazelle, a new photometric redshift code that I developed “from

scratch” to extract as much information as possible from the available data. gazelle is based

on a χ2 algorithm to compare the observed multi-wavelength SED to a wide range of SEDs

from the model grid presented in Chapters 3 and 4. From these χ2 values I can not only find

the best-fit redshift, but also derive probability densities from which uncertainty ranges can be

derived. gazelle also incorporates the functionality of a SED-fitting code, delivering physical

parameters such as stellar masses, star formation rates, stellar population ages, and metallicities

on top of the redshift for each individual galaxy, all accompanied by their respective confidence

ranges.

I then applied this code to a large sample of ≈ 106 galaxies, compiled from a range of publicly

available deep-fields, including large-area surveys such as COSMOS and the Subaru XMM-

Netwon Deep Field, over intermediate-sized fields such as GOODS and the MUSYC fields, to

pencil-beam surveys such as the Hubble Deep Fields that only cover a few arcmin2 of sky. All

these surveys cover the full observed optical and near-infrared range, while several surveys have

additional photometry in the ultraviolet and/or mid-infrared. This broad and homogenous

photometric coverage allows to determine redshifts, dust extinctions and physical parameters to

best-possible accuracy.

To ensure gazelle’s reliable and accurate operation I compared my photometric redshifts to

spectroscopic ones for a sub-sample where this data is available, finding redshifts to be only

slightly underestimated (median σz = −0.018, with σz = |zspec − zphot|/(1 + zspec)) and with

typical accuracies of σz = 0.05, but reaching as good as σz ≈ 0.01 with sufficiently detailed

SEDs. My derived physical parameters were checked against simulated photometry from semi-

analytical models and found to be accurate to ≈ 0.1 dex, allowing us to determine masses and

star formation rates with uncertainties as small as ≈ 20%.
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With these concerns allayed I continue to derive redshift distributions for each of the fields. I

generally find good agreement among the various fields, and also with predictions from semi-

analytical models as long as all observational aspects, in particular dust extinction and pho-

tometric uncertainties, are properly taken into account. I also find a slight excess of galaxies

at z ≈ 2− 2.5 that I attribute to emission lines, most prominently Hα, lowering the detection

threshold-mass and boosting the observed number of galaxies at this redshift. Observational

artefacts as possible cause of this effect were ruled out using Monte Carlo simulations.

I also derive stellar mass functions for each of the fields, and find them to agree with each other,

with the exception of a small offset in the lowest-redshift bin that I attribute to the way these

fields were selected in the first place. At the high-mass end I find a population of predominantly

passive galaxies that increases rapidly in density towards lower redshifts, a clear sign of the

build-up of the ellipticals we see in the local universe, and likely a consequence of the formation

of the first galaxy clusters. However, I also find a small percentage of massive, yet actively star-

forming galaxies, and that percentage increases rapidly towards higher redshifts, in line with

the idea of “downsizing”. I also compare my mass functions with results from semi-analytical

models, mostly confirming their predictions with my large and homogeneous dataset.

1.6.6 Star clusters in nearby galaxies: Witnesses of an eventful past

Appendix A extends a common technique of age-dating star clusters via broad-band colours

to a new kind of galaxy, in our case the lenticular galaxy NGC 4570 in the Virgo cluster. The

biggest challenge in age-dating star clusters, or in our case globular clusters, is the age-metallicity

degeneracy, i.e. disentangling reddening due to older ages, higher metallicities and, to some

degree, dust extinction.

In the present case I solved this challenge by obtaining very deep K-band photometry using the

ESO New Technology Telescope on La Silla, Chile. In combination with archival HST photometry

in the F435W and F850LP bands this gave me the necessary wavelength basis to disentangle

ages and metallicities. Extinction turned out to be low for this case, so that for this galaxy

photometry in these three filters was sufficient for our purpose. Globular cluster candidates

were then selected based on their physical sizes that I obtained from the HST data. I pioneered

the K-band observing technique, that allowed me to obtain an age, mass and metallicity, all with

their respective uncertainties, for each individual object, yielding a sample of 63 trustworthy

globular cluster candidates.

Their age and metallicity distribution revealed a large population of old and mostly metal-

poor clusters, in agreement with findings in our own Milky Way and other nearby galaxies.

However, it also revealed an almost equally large population of massive clusters with ages of
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only 1− 2 Gyr and near solar metallicities. The only plausibly way to explain this young and

metal-rich population is by a merger. From the information we derived for the star clusters we

can even extract more information about the merger: to match the ages of the clusters it must

have occured 1− 2 Gyrs ago, and must have involved at least one gas-rich galaxy to have enough

fuel to trigger the starburst that formed these clusters. From the metallicity of the clusters we

can furthermore estimate the Hubble type of this progenitor to be Sb or Sc. Earlier Sa-type

galaxies do not have enough gas left, while later types are too metal-poor to explain the near-

solar cluster metallicities. Although this Chapter only gives results from our pilot-study of one

galaxy, it clearly demonstrates the feasibility and power of this novel technique. This opens the

possibility of reconstructing the evolution of galaxies in the early universe from the age and

metallicity distribution of the globular cluster populations in galaxies we find in our cosmic

neighbourhood.

This pilot study has established the “astro-archaeological” analysis of star cluster populations

around unsuspicious, i.e. without peculiarities in their colour, morphology, etc., local galaxies as

a powerful method to infer violent starbursts in their distant past. Only starbursts accompanying

gas-rich mergers are powerful enough to leave - after 2 or more Gyrs – rich populations of star

and/or globular clusters. Star cluster analysis is the only way to identify multiple generations

of starbursts, as studies of the integrated light or even colour-magnitude diagrams of the most

nearby galaxies only allow to reconstruct the evolution back to the most recent starburst. In

this respect, this new method, which is applicable to all galaxies up to Virgo and, with the

advent of the next generation of space telescopes such as the James Webb Space telescope, out to

Coma cluster-distances, opens up an important complementary approach to the direct analysis

of high-redshift galaxies.

1.6.7 How universal is the stellar initial mass function? A test-case

Appendix B, published in Kotulla et al. (2008), takes a closer look at one of the most crucial and

influential parameters in galaxy evolution, the stellar initial mass function (IMF). Its importance

arises from the fact that small changes to the IMF, for instance a change to the slope of its power-

law, or a variation in the mass fraction of low-mass and hence low-luminosity stars, not only

affects the amount of light emitted per unit stellar mass, but also changes the rate of chemical

enrichment and energy input into the interstellar medium (via the mass fraction of short-lived

high-mass stars), and, e.g. for star clusters, also affects the dynamical evolution.

Several authors (e.g. Weidner & Kroupa, 2006; Meurer et al., 2009) have recently predicted a

change in the high-mass slope of the IMF in under-dense regions. The underlying assumption

there is, that under-dense regions form preferentially low-mass star clusters, and these low-mass
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clusters are observed and, on statistical arguments, expected to only contain stars up to a certain

limiting mass that depends on the mass of the host cluster. This would lead to an IMF that

is either truncated at the high-mass end, or, alternatively, has a steeper slope in the sense that

they contain fewer high-mass stars than expected from their number of low-mass stars. For very

young clusters this can be tested by comparing the luminosity in the UV, which is dominated by

relatively low-mass stars down to a few solar masses, to the luminosity in Hα, a proxy for the

flux of ionising photons primarily emitted by stars more massive than 20M�.

To test this scenario I took very deep Hα narrow-band data of the nearby galaxy Arp 78 and its

outskirts extending to far beyond the “optical” radius of this galaxy at the WIYN 3.5m telescope

on Kitt Peak (USA). After a careful data reduction and continuum subtraction necessary to obtain

good sensitivity for the extremely faint line emission I determined the star formation rate from

Hα. For comparison I also obtained a SFR from the far-UV flux measured on archival data taken

with the GALEX space telescope, and find that, within the associated large uncertainties, both

values agree. After careful consideration of age- and dust effects that might affect our findings I

conclude that the very low density tidal structure around Arp 78 can be described by a “normal”

Salpeter-like IMF and does not show signs of truncation or steepening. This clearly rules out

the modified IMF theories as described above at least for this galaxy. Similar observations for

a larger sample, some of which I already have acquired during a second WIYN observing run,

will be required to draw more generally applicable conclusions.
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Abstract:

galev evolutionary synthesis models describe the evolution of stellar populations in general,
of star clusters as well as of galaxies, both in terms of resolved stellar populations and of inte-
grated light properties over cosmological timescales of ≥ 13 Gyr from the onset of star formation
shortly after the Big Bang until today.

For galaxies, galev includes a simultaneous treatment of the chemical evolution of the gas
and the spectral evolution of the stellar content, allowing for what we call a chemically con-
sistent treatment: We use input physics (stellar evolutionary tracks, stellar yields and model
atmospheres) for a large range of metallicities and consistently account for the increasing initial
abundances of successive stellar generations.

Here we present the latest version of the galev evolutionary synthesis models that are now
interactively available at http://www.galev.org. We review the currently used input physics,
and also give details on how this physics is implemented in practice. We explain how to use the
interactive web-interface to generate models for user-defined parameters and also give a range of
applications that can be studied using galev, ranging from star clusters, undisturbed galaxies
of various types E . . . Sd to starburst- and dwarf galaxies, both in the local and the high-redshift
universe.
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2.1 Introduction

galev (short for GALaxy EVolution) evolutionary synthesis models have been developed over

many years. They were published in several steps and under a variety of first author names,

reflecting the number of students who have contributed their respective shares to the develop-

ment. galev models include the spectral evolutionary synthesis of a stellar population with

arbitrary star formation history on the basis of the time evolution of the stellar population in

the Hertzsprung-Russell diagram, as well as a detailed chemical evolution model for the ISM in

terms of a large number of individual element abundances. galev models have a wide range

of application from star clusters (SCs) to resolved nearby galaxies, to more distant galaxies ob-

served in terms of integrated spectra and photometry, all through galaxies at high redshifts.

Previous applications cover the range from star clusters, normal galaxies E, . . . Sd, dwarf galaxies

with and without starbursts, tidal dwarf galaxies, interacting and merging galaxies with their

major starbursts, galaxy transformation processes in galaxy clusters, high redshift galaxies with

and without starbursts and post-starbursts and damped Lyman-α absorbers. An early attempt

at coupling galev evolutionary synthesis models into a cosmo-dynamical structure formation

simulation was presented in Contardo et al. (1998).

galev models are now widely used throughout the community. To facilitate access to the latest

developments we here present a user-friendly and customised web-interface. It enables access to

already available models for the evolution of star clusters of various metallicities, and galaxies

of all types both in terms of their time evolution for comparison with observations in the Local

Universe and in terms of their redshift evolution. Furthermore it allows the user to run new

models for specific applications.

The philosophy for galev models is to keep them simple with as small a number of free pa-

rameters as possible, and have them predict a large range of observational properties, which – in

comparison with observations – constrain the few free parameters. At the present stage, galev

models are 1-zone models without spatial resolution and without any dynamics included. Fu-

ture prospects are the consistent inclusion of dust detailing absorption and reemission as a

function of gas content, metallicity and galaxy type, and the coupling with a dynamical model

for stars and gas, including a star formation criterion and an appropriate feedback description,

to cope with spatially resolved galaxy data.
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2.2 The GALEV code: An overview

2.2.1 Evolutionary synthesis for star clusters and galaxies

Our galev evolutionary synthesis models have many properties in common with the evolu-

tionary synthesis codes from other groups, e.g. galaxev (Bruzual & Charlot, 2003), pegase

(Fioc & Rocca-Volmerange, 1997) and Starburst99 (Leitherer et al., 1999), just to name a few, in

that all these codes trace the evolution of the stellar population in terms of integrated spectra

and/or colours for simple and composite stellar populations.

In contrast to evolutionary synthesis, stellar population synthesis (e.g. O’Connell, 1976, 1980) or

differential synthesis (e.g. Pickles, 1985a,b; Pickles & Visvanathan, 1985) attempts to find the best

linear combination of stellar spectra from some library to fit an observed galaxy spectrum . This

approach usually achieves very good fits but is limited to a status quo description and has diffi-

culties to prove the uniqueness of its solutions. The existence of a stellar Initial Mass Function

(IMF) and some continuous Star Formation History (SFH) can be imposed as boundary condi-

tions via Lagrangian multipliers. The major advantages of the population synthesis approach

are that it can give valuable first guesses for unknown SFHs and that it allows for unexpected

solutions.

All evolutionary synthesis models, on the other hand, have to assume a stellar IMF and a SFH, i.e.

the time evolution of the SFR for the galaxy. They use stellar evolutionary tracks or isochrones

that have to be complete in terms of all relevant stellar evolutionary stages.

Both methods need stellar spectral libraries that also have to be complete in terms of stellar

effective temperatures Teff, surface gravities log(g), and metallicities [Fe/H].

galev models are available for a range of stellar IMFs, including Salpeter (1955), Kroupa (2001),

and Chabrier (2003). Other choices of the IMF can easily be customised.

For the case of a simple stellar population (SSP), i.e. a star cluster, the SFH is a δ-function,

meaning that all stars are formed in a single timestep. galev models for SSPs of different

metallicities (Kurth et al., 1999; Schulz et al., 2002; Anders & Fritze, 2003; Lilly & Fritze, 2006)

were shown to well reproduce observed colours and spectral indices of star clusters as func-

tion of age and metallicity. They also show a pronounced non-linearity at metallicities close

to and above the solar value. Important results include the findings that any colour-to-age or

index-to-age calibration/transformations are only valid at one metallicity and that any colour-to-

metallicity or index-to-metallicity calibration/transformations are only valid at a given age (cf.

Schulz et al., 2002), and that extrapolating observational relations beyond their calibration range

lead to significantly misleading results.
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In Anders & Fritze (2003) we demonstrated the importance of nebular emission lines and con-

tinuum for young stellar populations and showed that they can account for as much as 50− 60%

of the flux in broad-band filters, in particular at low metallicities.

For the description of undisturbed galaxies, SFHs have been determined for normal average

galaxies of types E, S0, Sa, Sb, Sc, Sd (cf. Sect. 2.5.2), that, in combination with a Salpeter IMF

extending from a lower mass limit of 0.1 M� (roughly the hydrogen burning limit) to an upper

mass limit around 70− 120 M�, depending on the set of isochrones (cf. Sect. 2.3.1) selected,

provide agreement with average observed galaxy properties in terms of colours, spectra, lumi-

nosities, abundances, and gas content. We stress that our galaxy types are meant to denote

spectral types and we caution that the one-to-one correspondence between spectral and morpho-

logical types observed in the Local Universe might not hold to arbitrarily high redshifts.

While in terms of spectral evolution of the integrated light of galaxies (or star clusters) our mod-

els are comparable to other evolutionary synthesis models, they go beyond those in that they

also allow to describe and analyse resolved stellar populations in terms of colour-magnitude di-

agrams (CMDs) and in that they self-consistently describe the chemical evolution of the ISM

in galaxies together with the spectral evolution of the stellar populations (for the latter see

Sect. 2.2.3), allowing to realistically account for the coexistence of stellar subpopulations of dif-

ferent metallicities observed in local galaxies.

Most of the aforementioned capabilities are not entirely new. Models of the photometric evo-

lution of galaxies date back to Tinsley (1967, 1968, 1972), the first spectroscopic models ap-

peared roughly a decade later (Bruzual, 1983; Guiderdoni & Rocca-Volmerange, 1987). Models

of the chemical evolution of galaxies (e.g., Truran & Cameron, 1971; Tinsley, 1972; Matteucci &

Padovani, 1993) were capable of taking the increasing enrichment of subsequent stellar popula-

tions into account when computing colours (see also, e.g., Matteucci & Tornambe, 1987; Fritze

et al., 1989), spectra (e.g., Bressan et al., 1994; Fritze & Gerhard, 1994a; Fioc & Rocca-Volmerange,

1997; Pipino & Matteucci, 2004) and line indices (e.g., Weiss et al., 1995; Bressan et al., 1996). Silva

et al. (1998) were the first to include a radiative transfer code into their model and could hence

extend the wavelength coverage into the (far-)infrared. However, only very few models (e.g.,

Prantzos et al., 1994; Portinari et al., 1998) exist that take the metallicity dependence of stellar

yields into account and hence merit to be called chemically consistent. Those, unlike galev pre-

sented here, mainly focus on the metallicity distribution in the solar neighbourhood and only

derive a detailed chemical evolution but no spectral or photometric evolution.
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2.2.2 Chemical evolution of galaxies

Modeling the chemical evolution of galaxies starts from a gas cloud with given initial (e.g. pri-

mordial) abundances and given mass. A modified version of Tinsley’s equations (Tinsley, 1968),

including detailed stellar yields, is solved to study the chemical enrichment history of galaxies

of different spectral types. This requires knowledge of stellar yields, i.e. production rates of

different elements and isotopes, including contributions from SN Ia, as well as stellar lifetimes

as function of stellar mass and metallicity, that can be taken from nucleosynthesis and stellar

evolution models, respectively.

Closed-box models can be compared to models with specified in- and outflow rates and abun-

dances. We follow the chemical evolution of a large number of chemical elements H, He, ... Fe,

fully accounting for the time delay between SF and the return of material in stellar winds, PNe,

and SNe.

2.2.3 Chemically consistent GALEV models for galaxies

Combining the chemical evolution of ISM abundances and the spectral evolution of the stellar

population thus allows for what we call a chemically consistent treatment of both the chemical

evolution of the ISM and the spectral evolution of the stellar population in galaxies: we use input

physics (stellar evolutionary tracks, model atmospheres, stellar lifetimes and yields) for a large

range of metallicities and consistently account for the increasing initial abundances of successive

stellar generations.

Broad stellar metallicity distributions have been reported for the Milky Way disk (Rocha-Pinto

& Maciel, 1998), bulge (Sadler et al., 1996; Ramírez et al., 2000), and halo (Ak et al., 2007), as well

as for the nearby elliptical galaxy NGC 5128 (Harris et al., 1999; Harris & Harris, 2000).

Depending on the SFH of the respective galaxy type and eventually its infall rate, stars of dif-

ferent ages within a galaxy will have different metallicities and obey an age-metallicity relation

determined by their galaxy’s SFH.

An important consequence of this coexistence of stars with different ages and metallicities is

that stars of different metallicities and different ages dominate the light in different wavelength

regions. It has severe implications for metallicity indicators defined in different wavelength

regimes, which cannot be expected to trace one and the same stellar metallicity. It also affects

some widely used SF indicators and modifies, e.g., the calibrations for SFRs from Hα or [OII]

fluxes, as well as from FUV luminosities (cf. Bicker & Fritze, 2005).

Our galev code can model the spectral and chemical evolution of galaxies with arbitrary IMF
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and SFH over cosmological timescales, from the very onset of SF all through a Hubble time. In

combination with a cosmological model we can follow the redshift evolution of galaxies from the

early universe until today (Bicker et al., 2004). It also allows us to directly study the impact of

evolutionary corrections as well as of the chemically consistent treatment as compared to using

solar metallicity input physics only (cf. Chapter 5).

2.2.4 Colour magnitude diagrams

Despite simplifications the CMDs are valuable tools to study systematic effects of SFH recovery

from observations. Fritze & Lilly (2007) and Lilly & Fritze (2008) investigated the accuracy of

recovering SFHs from CMDs as a function of the ages of various subpopulations. In addition,

they compared their results with the accuracies of recovering SFHs from integrated spectra,

multi-band photometry, or Lick indices. These systematic studies are essential for more distant

unresolved stellar populations. Moreover, since synthetic CMDs can be calculated in any desired

filter combinations, they can be used to optimise observational strategies with respect to the

optimal filter combination, e.g. to disentangle ages and metallicities of young, intermediate-age

or old stellar populations.

2.3 Input physics

In the following sections we will review the input physics we use for our galev models.

2.3.1 Stellar evolutionary tracks and/or isochrones

Data for stellar evolution can be taken either from isochrones or stellar evolutionary tracks,

both having their advantages and disadvantages. galev models currently use the most recent

consistent set of theoretical isochrones from the Padova group (Bertelli et al., 1994, ff) for five

different metallicities [Fe/H] = (−1.7;−0.7;−0.4; 0.0; +0.4) and include the TP-AGB phase, the

importance of which was shown in Schulz et al. (2002). In order to be able to fully account

for emission lines we also include the Zero Age Main Sequence (ZAMS) into our models. The

isochrone for this ZAMS includes stars up to 120 M� and is created from the unevolved first

data points of the stellar evolutionary tracks. For more details we refer the reader to Bicker &

Fritze (2005).

In Fig. 2.1 we show stellar evolution tracks for a 2 M� star for 6 different metallicities rang-

ing from Z = 0.0004 = 1/50 Z� to Z = 0.03 = 1.5 Z� (Girardi et al., 2000). The general
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Figure 2.1: Stellar evolutionary tracks
of a 2 M� star for different metallicities
ranging between Z = 0.0004 = 1/50 Z�
and Z = 0.03 = 1.5 Z�.
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shape remains unchanged with changing metallicity, but low-metallicity tracks are shifted to-

wards increasing luminosities and higher effective Temperatures, i.e. towards the top left in the

Hertzsprung-Russell diagram. This behaviour is the same for stars of all masses, in the sense

that with decreasing metallicity stars become more luminous and their spectra shift towards

higher effective temperatures. It is therefore crucial to include those effects to obtain a consistent

picture of galaxy evolution.

2.3.2 Library of stellar spectra

In principle, every library of stellar spectra – observed or theoretical – can be used, provided

it is complete in terms of stellar Teff, log(g), and [Fe/H]. galev assigns spectra to stars in

the isochrones according to each star’s metallicity, effective temperature Teff and surface gravity

log(g), normalising the spectra with the star’s luminosity (for details see Sect. 2.4.1). So far,

galev uses the BaSeL library of model atmospheres from Lejeune et al. (1997, 1998), originally

based on the Kurucz (1992) library. The wavelength coverage spans the range from the XUV

at λ ≈ 90 Åto the FIR at λ = 160 µm, with a spectral resolution of 20 Å in the UV-optical and

50− 100 Å in the NIR range. We remind the reader that there are significant contributors other

than starlight (e.g. PAHs, thermal emission from cold dust) at wavelengths beyond the K-band,

that are not currently included in our models. This wavelength range should hence be used with

caution.

Stellar spectra are heavily influenced by metallicity due to the increased absorption line strength

(e.g. for Fe-lines) and line-blanketing with increasing abundances. In Fig. 2.2 we show the

example of a cool star (Teff = 3000K, log g = 4.0) from the above mentioned BaSeL library. The

effects of metallicity are stronger for cool stellar atmospheres where molecular absorption by
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Figure 2.2: Stellar spectra from the
Lejeune library for a star with identical
Teff = 3000K and log g = 4.0, but different
metallicities from [M/H] = −1.5 . . . + 0.3.

VO, TiO, NH4, H2O etc. plays a larger role (Allard et al., 2000; Kučinskas et al., 2006).

2.3.3 Gaseous emission: lines and continuum

In addition to the stellar absorption spectra we also compute line and continuum emission from

gas ionised by hot massive stars.

We do not take the ionising photons from the stellar spectral library, but instead use the tabulated

values from Schaerer & de Koter (1997) for NLyC as a function of stellar effective temperature,

radius, and metallicity. They yield much better agreement with observations as well as with

recent results from expanding non-LTE, line-blanketed models atmosphere calculations by Smith

et al. (2002).

We can then compute the total flux emitted by the gas per unit wavelength as

Fλ =
γλ(T)
α(2)(T)

NLyC =
c

λ2
γν(T)

α(2)(T)
NLyC (2.1)

with the speed of light c, electron temperature T = 10 000 K, and total recombination coefficient

α(2)(10 000 K) = 2.575 × 10−13 cm3 s−1 (Aller, 1984). The gas continuum coefficients are then

computed for T = 10 000 K following Ercolano & Storey (2006) that contains an algorithm to

compute the bound-free radiation for hydrogen and helium (γHI, γHeI, and γHeII). The H i

two-photon emission coefficient γH2p is taken from Nussbaumer & Schmutz (1984) and for the

free-free emission γb we use the formula from Brown & Mathews (1970) and compute the Gaunt

factors using the algorithm from Hummer (1988). All γ-factors are summed to form the final:

γν = γb + γH2p + γHI +
nHe+

nH+
γHeI +

nHe++

nH+
γHeII. (2.2)
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For the densities of the helium He i and He ii ions relative to H i we use values typical for H ii

regions in galaxies (Ercolano, private communication), 0.0897 and 1.667× 10−4 for He i and He ii,

respectively. The final isochrone spectra are not very sensitive to slight changes in these values.

The line strengths of the hydrogen lines are computed using atomic physics and the emission

rate of ionising photons NLyC from O- and early B-stars. From the number of ionising photons,

NLyC, we compute the flux in the Hβ line using

f (Hβ) = 4.757× 10−13erg×NLyC. (2.3)

Assuming Case B recombination for a pure hydrogen cloud with Te = 10 000 K (Osterbrock &

Ferland, 2006), we can then derive the line strengths of all other hydrogen lines. Line strengths

for heavier elements are computed using metallicity-dependent line-ratios relative to Hβ. For

metallicities [Fe/H] ≥ −0.4 those are taken from the Stasińska (1984) photoionisation models,

adopting typical Galactic values of Te = 8100 K and ne = 1 cm−3 for electron temperature and

density. For lower metallicities, we use observed line ratios from Izotov et al. (1994, 1997) and

Izotov & Thuan (1998). These are supposed to include systematic changes in Te, ne and the

ionising radiation field in lower metallicities environments (cf. Anders & Fritze, 2003). Note

that we do not include detailed radiation transfer calculations (as, e.g., in Garcia Vargas & Diaz,

1994; Ferland et al., 1998; Ercolano et al., 2003), hence we caution the user to use line-ratios for

detailed line diagnostics. We correct the gaseous emission for small amounts of dust within the

H ii regions by reducing the ionising flux by 30% if the gaseous metallicity is near solar, i.e. for

[Fe/H] ≥ −0.4. For lower metallicities we use the full ionising flux since those environments

are essentially dust-free (Mezger, 1978). We do not account for yet unknown amounts of dust

depletion of heavy elements within the H ii regions. However, in the case of low-metallicity

galaxies these effects are already included in the observed line-ratios.

Note that we do not account for internal self-absorption of Lyman continuum photons within

the H ii regions or the surrounding galaxy, since the fraction of flux leaking out of these re-

gions is still a matter of ongoing debate (see, e.g., Ferguson et al., 1996; Castellanos et al., 2002;

Fernández-Soto et al., 2003; Inoue et al., 2005; Siana et al., 2007; Wise & Cen, 2009).

Depending on application, our models can include both continuum and line emission, contin-

uum emission only or no gas emission at all. In Krüger et al. (1995) and Anders & Fritze (2003)

we showed that in the case of Blue Compact Dwarf galaxies and in young and metal-poor SSPs,

gaseous emission can contribute as much as 60% to the flux in broad-band filters. Emission lines

are the dominant contributors in the optical, whereas continuum emission dominates in the NIR.

Combining the effects of higher luminosities and higher effective temperatures with the effects

of longer lifetimes of high-mass stars at low metallicities has a profound impact on the spectrum
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Figure 2.3: Emission line spectrum
of the 4 Myr isochrone for 5 dif-
ferent metallicities ranging between
Z = 0.0004 ([Fe/H] = −1.7) and
Z = 0.05 ([Fe/H] = +0.4).

of galaxies. All three factors lead to bluer colours, higher overall luminosities and as a further

aspect significantly stronger gaseous emission, i.e. gaseous continuum and line emission.

In Fig. 2.3 we show the gaseous emission spectra for isochrone spectra at an age of 4 Myr and

for 5 metallicities from 1/50 Z� to 2.5 Z�. The first notable aspect is the overall emission line

strength, which is higher by a factor of about 10 comparing the two extreme cases. But also the

individual line ratios change significantly, i.e. the ratio between Hα (6563 Å) and [N II] (6583 Å)

(Hα/[NII] ≈ 48 at low metallicity and ≈ 7 for solar metallicities). This extreme ratio is directly

affected by the lower nitrogen abundance at low metallicity. Other line ratios, e.g. [O II] (3727

Å) to [O III] (5007 Å) also change due to the more intense radiation field coming with the low

metallicity environment.

2.3.4 Lick stellar absorption indices

Since the resolution of the Lejeune et al. (1997, 1998) library is not sufficient to calculate Lick

absorption indices directly from the spectra, galev models use the empirical calibrations pre-

sented by Gorgas et al. (1993), Worthey et al. (1994) and Worthey & Ottaviani (1997). From those,

galev calculates the fluxes in the Lick indices for every star, sums them up for the entire stellar

population at every timestep to yield integrated index fluxes and, in combination with contin-

uum fluxes from the integrated absorption line spectra, the respective index equivalent widths
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(Kurth et al., 1999; Lilly & Fritze, 2006). galev at the present stage includes the following

Lick indices: HδA, HγA, HδF, HγF, CN1, CN2, Ca4227, G4300, Fe4383, Ca4455, Fe4531, Fe4668,

Hβ, Fe5015, Mg1, Mg2, Mgb, Fe5270, Fe5335, Fe4506, Fe5709, Fe5782, NaD, TiO1, and TiO2 (see

Trager et al., 1998, and references therein for all index definitions).

2.3.5 Stellar yields

To model the chemical enrichment histories of galaxies, galev uses stellar yields for a large

number of individual elements (H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar,

K, Ca, Sc, Ti,V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge) from Woosley & Weaver (1995) for massive

stars and from van den Hoek & Groenewegen (1997) for low-mass stars of various metallicities.

Stellar lifetimes are taken from the isochrones. There is a minor inconsistency in doing so, since

Woosley & Weaver (1995) used models without mass-loss, while current isochrones in general

account for mass-loss. However, since yields are only available for a very coarse metallicity grid

this does not significantly affect the resulting chemical evolution. galev also includes type

Ia SN yields for the carbon deflagration white dwarf binary scenario (W7) from Nomoto et al.

(1997). See Lindner et al. (1999) for a detailed description of the chemically consistent chemical

evolution aspects of galev.

2.3.6 Ejection rates and remnant masses

One of the central input parameters for galev is the time-dependent ejection rates necessary

to compute the chemical evolution of galaxies. Those rates are derived from the initial stellar

masses M? and the remaining remnant masses mR. For stars with masses M? ≥ 30 M� the

remnant is assumed to be a black hole of mBH = 8.0 M�, with the remaining mass being returned

to the ISM; stars with initial masses of 30 M� ≥ M? ≥ 6.0 M� result in a neutron star of mass

mNS given by Nomoto & Hashimoto (1988):

mNS[M�] = 1.02 + 3.6363× 10−2(M?/M� − 8.0)M�;

For the mass range of 6.0 M� ≥ m? ≥ 0.5 M�, for which the stellar remnant is a white dwarf,

we use a fit to the data points of Weidemann (2000):

mWD[M�] = 0.444 + 0.0838(M?/M�);

This, combined with the extrapolation of the NS relation down to 6 M�, provides a better

matched connection between the two mass ranges. while being compatible with the slightly
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Figure 2.4: Main-sequence lifetimes as
function of initial stellar mass for three
different metallicities.

steeper slope derived by Kalirai et al. (2008). However, as the remnant is only used to derive the

mass returned to the ISM during its lifetime and death, the exact transition point from neutron

star to white dwarf is of minor importance.

Stars with masses m? . 0.5M� have lifetimes in excess of a Hubble time and negligible winds,

hence do not return any material to the ISM.

In Fig. 2.4 we show the main-sequence lifetimes of stars as function of initial mass for three

different metallicities from Z = 0.002 = 1/10 Z� to Z = 0.02 = Z�, based on data from Marigo

et al. (2008) for M? < 7 M� and Bertelli et al. (1994) for M? > 7M�. Low-mass stars live longer at

high metallicities, while high-mass stars have longer lifetimes for lower metallicities; stars with

masses ≈ 3− 4 M� have roughly the same lifetimes independent of metallicity (see Fig. 2.4). The

20M� star for example has a 10% increased lifetime at Z = 1/10 Z� as compared to Z = Z�.

2.3.7 Filter functions and magnitude systems

galev includes a large number of filter functions to be convolved with the model spectra in

order to avoid uncertainties associated with transformations between filter systems. It also pro-

vides the option to choose the desired magnitude system Vegamag, ABmag, and STmag to be

directly comparable to observations and avoid transformations between different magnitude sys-

tems. Magnitudes in the Vegamag systems are defined to have magnitude zero for an A0V star;

we use the Vega-spectrum from the Lejeune et al. (1997, 1998) library combined with the flux cali-

bration from Bohlin & Gilliland (2004) as our standard star. AB magnitudes (Oke, 1974; Bohlin &

Gilliland, 2004) are derived from the monochromatic flux fν such that mAB = −2.5 log( fν) + 48.6

if fν is measured in erg s−1 cm−2 Hz−1; a colour of 0 in the AB magnitude means that the object

emits constant flux per unit frequency interval; analogous to the above, colours of 0 in the ST
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magnitude systems mean constant emitted flux per unit wavelength interval. The zero-point has

been chosen such that a source with fλ = 3.63× 10−9erg s−1 cm−1Å−1 has mST = 0 mag in all

filters.

Our current database contains filters from all major telescopes and instruments, including all

HST instruments (including WFC3), many ESO instruments, and all common filter sets like

Johnson/Cousins, Strömgren, Washington, and SDSS. However, note that due to the wide wave-

length sampling of 20 Å of the current spectral library, narrow-band filters cannot be adequately

supported at this stage.

2.3.8 Dust extinction

To account for extinction and reddening due to interstellar dust, galev also implements the

most commonly used empirical extinction laws from Calzetti et al. (2000) and Cardelli et al.

(1989). The earlier was derived from actively star-forming galaxies and describes a relatively gray

extinction without the 2175 Å bump, characteristic for the latter extinction law. For the Cardelli

law we assume a mean extinction parameter of RV = A(V)/E(B− V) = 3.1, characteristic for

relatively quiescent galaxies. Although models exists that offer a more detailed treatment of

dust extinction and in some cases dust emission (see, e.g., Silva et al., 1998; Popescu et al.,

2000; Cunow, 2001, 2004; Dopita et al., 2005; Möllenhoff et al., 2006; Piovan et al., 2006a,b), the

major drawback of these models is that they in general require assumptions on the geometry

and spatial distribution of dust, gas and stars. However, the aim of galev is to describe the

spectrum of the average representation of each galaxy type, making if difficult to compare these

two approaches.

2.3.9 Cosmological model

galev can also be coupled to a cosmological model to describe the evolution of galaxies as

function of redshift. For this purpose we have to convert ages into redshifts and vice versa. In

its current version we implemented a flat cosmology (ΩK = 0). The choice of the local Hubble

constant H0, the density parameters ΩM and ΩΛ (with the additional constraint ΩM + ΩΛ = 1)

and the galaxy formation redshift zform then completely determine the galaxy age as function

of redshift. Because of the short time interval between e.g. z = 12 and z = 5, the exact value of

zform has very little impact, hence we choose an intermediate value of zform = 8 as our default.
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2.3.10 Intergalactic attenuation

To correctly describe spectra of higher redshift galaxies one has to include the absorption short-

wards of the Lyman-α line due to intervening neutral hydrogen clouds. For that reason galev

implements the description for the average attenuation effect as function of redshift following

Madau (1995) and covering the range 0 ≤ z ≤ 7.

2.4 Program structure

The actual modeling process with galev can be divided into three steps:

1. In the first step galev convolves the isochrones of each age-metallicity combination with

the specified IMF, normalised to 1 M�. It then assigns a spectrum from the stellar library

to each star on each isochrone and computes the integrated isochrone spectrum. Then

the gaseous continuum emission and emission lines are added to the young isochrone

spectra. Using the yield tables and stellar remnant masses described in Sect. 2.3.5 with

stellar lifetimes from the isochrones, galev also derives the gas and metal ejection rates

needed for the chemical evolution.

2. In the second step galev computes the chemical and spectral evolution of the desired

stellar population. For each timestep the current isochrone spectra are weighted with

the SFH. The contributions from older SF episodes are obtained by integration over all

past timesteps. The required interpolations in age and metallicity are described below.

galev thus calculates the time evolution of the integrated spectrum and its resulting line

strength (i.e. Lick-) indices of a simple (SSP, star cluster) or composite (galaxy) stellar

population, including the gaseous emission where appropriate. From the ejection rates

and the available gas mass galev calculates the new gaseous metallicity that will be used

for stars born during the next timestep.

3. In the last step galev converts the integrated spectra into magnitudes in a large number

of filters. Given a list of requested filters it convolves the spectra with the filter functions

and applies zero-points to yield absolute magnitudes for each timestep. It can alterna-

tively be combined with a cosmological model to yield apparent and absolute magnitudes

as function of redshift. If requested it also accounts for dust extinction using observed

extinction laws and, in the context of cosmological evolution, also for the attenuation by

intergalactic neutral hydrogen.

This process is also explained in a more vivid step-by-step explanation in Appendix C.
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2.4.1 Computation of isochrone spectra

A crucial step is the assignment of stellar spectra from the library to the points describing the

isochrones. Since the available stellar parameters Teff and log(g) in the library often do not

match those required by the isochrones, galev has to interpolate between them in both Teff

and log(g). For a given combination of Teff and log(g) this is done as follows:

1. Find up to four spectra bracketing the required values in both Teff and log(g).

2. Interpolate the spectra to the required value of Teff in each pair of lower (upper) values

of log(g), yielding two new interpolated spectra with the correct Teff and different log(g).

An important factor during this interpolation is the weighting of the spectra with each

star’s luminosity given by the isochrone. We choose to use the integrated luminosity in

the Johnson-V or Bessell-H-band, depending on the temperature of the star given by Teff.

The original approach to normalise all stars in the V-band turned out to be insufficient for

cool giants with only little flux in the optical. A “cool giant” in this context is defined by

Teff ≤ 3500 K and log(g) ≤ 3.5.

3. The spectrum for the required value of log(g) is then obtained by interpolation between

the two spectra with the right Teff, again weighting with each star’s respective luminosity.

For the very hot stars (Teff > 50 000 K), the BaSeL stellar library does not provide spectra. In

those cases we extend the spectral library by approximating the missing stellar spectra with

black-body spectra of the requested temperatures. The validity of this approximation for wave-

lengths long-wards of λ ≈ 230 Å is supported by only minor differences between pure black-

body and true spectra from both observations (Gauba et al., 2001) and modelling (Rauch, 2003)

of very hot central stars of planetary nebulae.

In a final step, all isochrone spectra are normalised to a distance of 10 pc, and are given in units

of erg s−1 cm−2Å−1.

2.4.2 Interpolation of isochrone-spectra and integration of galaxy spectra

One important aspect of galev is how to interpolate between the isochrone spectra of different

ages and metallicities, in other words how to map the coarse grid of isochrones available onto

the finer grid needed for galaxies. galev here interpolates logarithmically between ages and

linearly between metallicities expressed as log(Z) ∼ [Fe/H]. During their very early stages the

gaseous metallicities of galaxies are lower than the metallicity of the lowest metallicity isochrone

with [Fe/H] = −1.7. For stars born at these stages, we chose to use the lowest metallicity

isochrone to avoid the uncertainties in an extrapolation to lower metallicities. The same is done
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for stars born from gas with a metallicity higher than the highest metallicity isochrone. For these

stars we use the highest metallicity isochrone available with [Fe/H] = +0.4.

2.5 Calibration of the GALEV models and comparison to

observations

We stress that with the input physics as outlined above, a stellar IMF with lower and upper mass

limits chosen and total mass of the galaxy or star cluster specified, galev models provide the

time evolution of spectra, luminosities, and colours in absolute terms. The same holds true for the

gas content and the chemical enrichment of galaxies. No a posteriori gauging is applied.

The only exception is the cosmological context for galaxies: before luminosities and magnitudes

of redshifted galaxies are calculated, the B-band model luminosities after a galaxy age corre-

sponding to redshift z = 0.0044 (i.e. the redshift of the Virgo cluster) in the chosen cosmological

model are scaled to the average observed B-band luminosity of the respective galaxy type in the

Virgo cluster (cf. Sect. 2.5.2).

In the following we present as an overview the comparison of galev models for star clusters

and for normal galaxy types E, Sa . . . Sd with observations and refer to previous papers for more

details.

2.5.1 Star clusters

The colours from U through K predicted by galev models for SSPs or star clusters at an age of

∼ 12− 13 Gyr are in very good agreement with the respective observed colours for a large set

of M31 and Milky Way globular clusters (Barmby et al., 2000; Barmby & Huchra, 2000) at their

respective metallicities (cf. Schulz et al., 2002). Small deviations in the U- and B-bands can be

explained by the existence of Blue Straggler stars (likely products of stellar mergers) in the dense

cores of GCs, which can make significant contributions at those short wavelengths (Xin et al.,

2007; Xin & Deng, 2005; Cenarro et al., 2008), but are not included in our models yet, as standard

isochrones exist for non-interacting single stars only. Further contaminants in the blue-to-UV

region are Blue Horizontal Branch stars (Schiavon et al., 2004; Dotter et al., 2007) and to a lesser

degree even Cataclysmic Variables and low-mass X-ray binaries in the far-UV range (Rich et al.,

1993; Dieball et al., 2007).

As shown in Kurth et al. (1999) and Lilly & Fritze (2006), Lick indices for SSPs as calculated by

galev agree well with Galactic and M31 globular cluster data as compiled by Harris (1996) in
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Figure 2.5: Evolution of the V-K colour
of our SSP models with metallicities
of [Fe/H] = −1.7 (red, solid line),
[Fe/H] = −0.7 (green, dashed), and
[Fe/H] = 0.0 (blue, dash-dotted). We also
plot the data (ages from Mackey & Gilmore
(2003), colours from Persson et al. (1983))
for 35 clusters in the Large Magellanic
Cloud for comparison.  0
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galev models for star clusters also show good agreement at an evolutionary age of ∼ 12− 13

Gyr with the empirical calibrations for colours (B − V) and (V − I) versus metallicity [Fe/H]

for old Galactic and M31 globular clusters, as e.g. given by Couture et al. (1990) and Barmby

et al. (2000) over the metallicity range −2.3 ≤ [Fe/H] ≤ −0.5 of these clusters. They also show,

however, significant deviations from a linear extrapolation of these empirical relations towards

higher metallicities, and they also show that the empirical relations are only valid for the old

globular clusters for which they have been derived. Models can, of course, be used to study the

behaviour of colour – metallicity relations for any colour and as a function of time (cf. Schulz

et al., 2002, for details).

In Fig. 2.5 we plot the evolution of three SSP models with different metallicities ranging from

the lowest available value of [Fe/H] = −1.7 to the solar value [Fe/H] = 0.0. For comparison

we also show V-K colours from Persson et al. (1983) for star clusters in the Large Magellanic

Cloud, colour-coded according to their metallicity as derived from CMDs (Mackey & Gilmore,

2003). Our models are able to not only reproduce the full range of observed colours, but also

match the colour-evolution of each metallicity subpopulation if typical uncertainties of 0.4 dex

are accounted for in the age-determination. For the old and metal-poor globular clusters our

predicted V-K colours are in good agreement with observations.

As shown in Lilly & Fritze (2006), galev models for SSPs also agree, after 12 − 13 Gyr of

evolution with empirical calibrations of Lick indices vs. [Fe/H]. However, they also show that

all metal-sensitive indices are also age-dependent and that the famous age-sensitive Hβ and Hγ indices

are also metal-dependent to some extent (see also Thomas et al., 2003; Korn et al., 2005). Hence, the

empirical calibrations of Mg2, Mgb, etc. vs. [Fe/H] are valid only for old (i.e. > 10 Gyr) globular

clusters.

1http://physwww.physics.mcmaster.ca/~harris/mwgc.dat
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Figure 2.6: Star formation histories for
the five different galaxy types E and
Sa through Sd. Absolute numbers are
normalized to a total galaxy mass of
1010M�.

Empirical calibrations for colours or Lick indices vs. metallicity or age should therefore not be

used for star clusters or globular clusters for which it is not a priori clear that their properties

fall within the range of the calibrating Galactic clusters. Instead a full set of colours and/or

indices in comparison to an extended grid of models covering the full parameter space, allows

for independent and accurate determinations of both ages and metallicities (cf. Sect. 2.9.1).

2.5.2 Galaxies

By default, all our galev models for galaxies use a Salpeter IMF (Salpeter, 1955) with lower

and upper mass limits of 0.1 M� and 100 M�, respectively.

The star formation histories, i.e. the time evolution of the star formation rates, of the different

spectral galaxy types E and Sa to Sd are the basic parameters of galev and, in fact, of any

kind of evolutionary synthesis models. In Fig. 2.6 we show SFHs for galaxies of different types

from E through Sd, assuming the same total (i.e. stars and gas) mass Mtot of 1010 M� for all of

them. These SFHs are in good agreement with chemical and spectrophotometric findings from

Sandage (1986).

For the elliptical model we use an exponentially declining SFR

Ψ(t) =
Mtot

α
× exp(−t/τ) (2.4)

with an e-folding time τ = 1 Gyr and α = 8.55× 108 yr.

For spectral types S0 and Sa through Sc the SFR is tied to the evolving gas content as given by

Ψ(t) = β× Mgas(t)
109M�

, (2.5)
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with efficiency parameters β decreasing from early to later spiral types, β = 1.0 M� yr−1 for S0,

β = 0.33 M� yr−1 for Sa, β = 0.19 M� yr−1 for Sb, and β = 0.11 M� yr−1 for Sc galaxies.

Sd model galaxies are described by a constant SFR:

Ψ(t) = ψ0 × Mtot

1010M�
= const, (2.6)

where ψ0 = 0.4 M� yr−1.

For closed-box models, these parameters α, β, ψ0, and τ are the only free parameters. We do not

require additional parameters such as infall of gas or outflow in galactic winds to reproduce

observations. Note that all these SFH parameters are independent of galaxy mass. We therefore

do not reproduce mass-metallicity or colour-magnitude relations for galaxies of identical spectral

types.

These SFHs are very similar in all evolutionary synthesis models (cf. e.g. Bruzual & Charlot,

2003; Fioc & Rocca-Volmerange, 1997). In detail, we adjust the SFH for the chemically consistent

galev models as to match, after a Hubble time of evolution (i.e. ≈ 13 Gyr for our assumed

concordance cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.30 and ΩΛ = 0.70), the observed

• average integrated colours from UV through NIR,

• average gas fractions,

• average metallicities,

• average present-day SFRs,

• average mass-to-light ratios, and

• template UV – optical spectra

of the respective spectral types as detailed below. All these observational constraints together

very neatly define the average SFHs of undisturbed galaxies E, Sa, Sb, Sc, Sd and tightly constrain

the few parameters describing them for a given IMF.

We stress that galev and all other evolutionary synthesis models with their respective SFHs

are meant to describe spectral types of galaxies. And we caution that while in the Local Universe

and for undisturbed galaxies a clear one-to-one correspondence is observed between spectral

and morphological types, it is an open question how far back in time this correspondence might

hold.

Gas fraction: The above described parameters have been tuned to reproduce the typical gas

fractions observed in local galaxies (e.g. Read & Trentham, 2005). We use gas contents, defined
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as fractions of gas relative to the total (gas+stars) mass, of Mgas/Mtot = 0.0 for E-models, 0.05

for Sa, 0.15 for Sb, 0.30 for Sc, and 0.55 for Sd models, respectively.

Colours: With these parameters being fixed, we compare a wide range of model-predicted

colours from near-UV to near-IR to values from the literature. Our (B-V) colours, e.g. of 0.86

(E), 0.78 (Sa), 0.64 (Sb), 0.56 (Sc), and 0.43 (Sd) compare very well with the ranges found in the

RC3 catalog of de Vaucouleurs et al. (1995), listing mean colours of (B − V) = 0.89+0.17
−0.53 (E),

0.74+0.25
−0.35 (Sa), 0.66+0.22

−0.47 (Sb), 0.51+0.22
−0.50 (Sc), and 0.44+0.22

−0.18 (Sd).

Spectra: In Fig. 2.8, we compare our model spectra to local templates for the galaxy types E, Sa,

Sb, Sc, Sd from the catalog of Kennicutt (1992). As can be seen from those plots, the observed

spectra for all spectral galaxy types from old passive ellipticals through the actively star forming

Sd galaxies are well reproduced. Although our spectra (here using Lejeune’s library) have a

lower spectral resolution than the observed templates, they nonetheless reproduce all features,

like absorption and emission lines. In the lower part of each plot we also show relative differ-

ences between model and template spectra. Deviations are generally smaller than differences

between different galaxies of the same type, confirming the good agreement. Small differences

for the emission lines originate in different spectral resolutions of templates and model spec-

tra. Note that due to our chemically consistent treatment galev models can reproduce the Sd

template spectrum with our Sd model at an age of 13 Gyr. This is a notable difference to all

other evolutionary synthesis models that can only reproduce Sd template spectra with younger

models of ages 4− 6 Gyr (cf. Bruzual & Charlot, 1993).

Metallicities: As mentioned above galev models calculate the time evolution not only of indi-

vidual element abundances but also of the global ISM metallicity Z. After ∼ 13 Gyr of evolution

(for details on the evolution as function of age or redshift see Bicker et al. (2004) or Chapter

5), our models reach ISM abundances of ZE = Z�, ZSa = 1.5 Z�, ZSb = 0.8 Z�, ZSc = 0.5 Z�,
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Figure 2.8: Comparison of model spectra of different types (top row: E and S0, middle row Sa and Sb, bottom row Sc
and Sd) with observed template spectra from Kennicutt (1992). The black solid lines show the spectrum of galev

models at an age of 12.8 Gyr, the coloured lines show spectra of several template galaxies of each respective type.
In the lower part of each plot we also show relative differences between the galev spectra and each template spectrum.
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and ZSd = 0.25 Z�. Those metallicities are in good agreement with typical ISM abundances, as

measured at 1 Reff, the effective or characteristic radius, of spiral galaxies of various types (Oey

& Kennicutt, 1993; Ferguson et al., 1998a; van Zee et al., 1998). Note that our models aim to

represent the typical L? or M? galaxy of each spectral type. Galaxies of different masses within the

same spectral type are known to have slightly different metallicities, as described by the mass-

metallicity or luminosity-metallicity relations (Skillman et al., 1989; Tremonti et al., 2004; Kewley

& Ellison, 2008). As stated before, these relations are currently not accounted for by galev

standard models. However, the user is free to choose parametrisations of the SFHs as a function

of galaxy mass (as, e.g., in Bressan et al., 1994) that reproduce these relations.

Star formation rates: galev models predict the following present-day SFRs Ψp in [M� yr−1]

for the different spectral galaxy types: Ψp ≈ 0 for E, Ψp = 0.65 for Sa, Ψp = 0.4 for Sb, Ψp = 0.47

for Sc, and Ψp = 0.13 for Sd galaxies. These numbers are in agreement with the average star

formation rates of 0.22, 0.32± 0.2, 0.33± 0.14, and 0.09± 0.03 M� yr−1 for Sa to Sd galaxies from

Kennicutt (1983). We caution that the smooth SFHs in galev and other evolutionary synthesis

models certainly are simplifications; real galaxies will in general experience fluctuations in their

SFRs around these mean values. For the Milky Way, Rocha-Pinto et al. (2000) showed on the basis

of individual stellar ages and abundances that the mean global SFH indeed fell nicely between

those of our Sb and Sc models, with fluctuations of a factor of 2 on timescales of 100 Myr. Such

fluctuations around the mean, however, do not significantly affect the long-term evolution.

Mass-to-light ratios: Using the stellar mass assembled after ∼ 13 Gyr and the absolute V-band

luminosity, we compute the V-band mass-to-light ratios. The results are: M/LV(E, Sa, Sb, Sc, Sd) =

11.8, 8.2, 5.9, 4.5, 3.0, respectively. These include a factor that we call fraction of visible mass (FVM)

and that accounts for the fraction of mass locked up in sub-stellar objects like brown dwarfs,

planets, etc. This factor is set to FVM=0.5 in galev models, implying that only half the star

formation rate forms luminous stars, while the remaining half is locked up in non-luminous

objects (cf. Bahcall et al., 1992). Only with this FVM=0.5 can agreement with observed average

M/L ratios (Faber & Gallagher, 1979; Bell & de Jong, 2001; Read & Trentham, 2005) be achieved

together with agreement in colours, spectra, and chemical abundances. Note that FVM does not

include remnants of stellar evolution like white dwarfs, neutron stars or black holes; those are

considered separately as part of stellar evolution.

Introducing the FVM parameter does not only affect the mass-to-light ratios but also has an

impact on the chemical evolution with in turn impacts on most other derived parameters. A

Salpeter IMF with mass-limits of 0.1 and 100 M� would lock up 60% of the mass in long-lived

stars with M ≤ 1 M�, with the remaining 40% progressing the chemical enrichment of the galaxy.

However, by applying a FVM=0.5 we half this fraction of stars with M ≥ 1 M� so that now only

20% of stars return their ejecta at the end of their lifes, with the majority of mass being locked



Sect. 2.5: Calibration of the GALEV models and comparison to observations 51

up. This concept to slow down the chemical enrichment is a common feature of many codes,

but comes with different names, e.g. as free parameter (1− ξ) in Portinari et al. (1998).

Luminosity normalisation With the SFHs as given above and a Salpeter IMF, galev models

calculate the time evolution of spectra and luminosities in absolute terms as a function of the

total mass, initially all in gas. Colours, of course, are independent of galaxy mass as galev

models assume the SFH of each galaxy type to be independent of galaxy mass (see Fig. 2.6).

Chemical ISM abundances are also determined by this SFH and by the absolute level of SFRs

in relation to the mass in the initial gas reservoir. Spectral fluxes and luminosities on the other

hand are mass-dependent. If models of undisturbed galaxies are to be compared to observations

of individual galaxies, it is important to calibrate their absolute luminosities to the observed

ones, thereby also calibrating their (gaseous + stellar) masses and their SFRs.

Before we can compare models to distant galaxies, we need to calibrate their apparent mag-

nitudes in the Johnson B-band against average observed magnitudes of the respective spectral

galaxy types in the Local Universe. The average observed apparent luminosities of the different

galaxy types in the Virgo cluster are given by Sandage et al. (1985a,b) to be mB(E) = 10.20,

mB(S0) = 12.60, mB(Sa) = 11.95, mB(Sb) = 12.90, mB(Sc) = 12.83, and mB(Sd) = 13.95. The

correction factors to match the computed and observed luminosities are then also applied to all

mass-dependent model parameters, i.e. to stellar and gaseous masses, SFRs, etc.

2.5.3 Disturbed galaxies: Starbursts & SF truncation

In addition to the undisturbed galaxies above with their smooth and monotonically decreasing

SFRs, galev can also describe the evolution of galaxies encountering fast changes in their SFR,

e.g. a starburst with significantly enhanced star formation rate, or a truncation or strangulation

of the star formation rate on some shorter or longer timescale, respectively. This allows us to

study not only the spectral but also the chemical evolution of galaxies that experience starbursts

or a quenching of their normal SFR, as they can occur e.g. during galaxy-galaxy interactions

or mergers or in the course of the various transformation processes discussed for field galax-

ies that fall into galaxy clusters. We recall that galev models only deal with effects on the

SFRs of galaxies and should be viewed as complementary to dynamical models describing the

morphological transformations eventually related to these processes. Both starbursts and SF

truncation/strangulation require additional free parameters. The first of these is the time of

onset tb, i.e. the age at which a previously undisturbed galaxy begins to feel changes in its

SFR. Starbursts are described by a prompt increase in SFR followed by an exponential decline

on some given timescale τb, that typically is of the order of a few hundred Myr for normal-size

galaxies and of order 105 − 106 yr for dwarf galaxies.
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Across the literature, a number of different definitions for the strength of a burst are in use.

The strength of a burst is either described by the amount of stars formed during the burst as

compared to the stellar mass at the beginning or at the end of the burst or by the amount of all

gas available at tb that is transformed into stars during the burst, equivalent to the star formation

efficiency (SFE) of the burst. We prefer the latter definition and define the burst strength via the

star formation efficiency of the burst:

SFE(burst) =
stellar mass formed during burst

gas mass available at onset of burst
(2.7)

This definition limits burst strengths to be within the range 0 . . . 1 and gives, at the same time,

a measure of the global SF efficiency during the burst. Please note that since the burst strength

depends on the amount of gas available at the onset of the burst, bursts of the same strength

but occuring at different times and/or in galaxies of different types do not necessarily form the

same amount of stars. e.g. a strong burst in an old and gas-poor Sa galaxy will form a much

smaller mass of new stars than a weak burst early in the life of a gas-rich Sd galaxy. All burst

strengths can only be determined at the end of the bursts. Before the end of the burst only lower

limits can be estimated.

A truncation or strangulation of the SFR, e.g. as a galaxy falls into a galaxy cluster and has its H i

stripped by ram pressure, is described either by an abrupt termination of SF or an exponential

decline of the SFR on a timescale τb. After a burst or after SF truncation/strangulation, galev

models can have SFRs going either exponentially to zero or to some constant low level.

2.6 Additions to GALEV during and for this thesis

The main purpose of this thesis is the application of galev to large photometric samples of

galaxies over a wide range of redshifts. For this reason I needed to include two new features

into the existing code: A proper treatment of all effects related to the redshift of the galaxy,

as well as the possibility to trace the time- and redshift evolution of galaxies at a particular

evolutionary state, such as a certain stage of a starburst.

For the first-mentioned update I first included a cosmological model (Hogg, 1999) into galev

that allows to derive most importantly the lookback-time and distance modulus as function of

redshift for arbitrary choices of the cosmological parameters H0, ΩM, ΩΛ and ΩK. With these

parameters galev can now compensate for the younger ages of galaxies at higher redshifts, al-

lowing for a self-consistent treatment of evolutionary and cosmological corrections (see Fig. C.14

for an step-by-step example on how the final spectrum is calculated). I also included a proper
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treatment of intergalactic hydrogen absorbing light shortwards of Lyman-α by implementing the

prescription of Madau (1995). In collaboration with Dr. Tepper-Garcia I am also working on

implementing not only the average attenuation, but also the respective scatter among different

sight-lines to get a better handle of the involved model-uncertainties: a single Damped Lyman-α

absorber, for example, might complete absorb the flux in a narrow-band filter, making accurate

predictions for the magnitude in this filter troublesome.

The second major addition to the code now allows to model the time- and subsequently redshift-

evolution of a galaxy spectrum at a particular point during the galaxy’s evolution. To obtain

accurate photometric redshifts with as little as possible systematic effects we, e.g., need to know

the spectrum of a starburst galaxy at the peak of star formation activity at any arbitrary redshift.

With the traditional approach this is only possible if the grid contains myriad models with

slightly different burst onset times, each of which contains the spectrum of interest at a single

time-step. The new capability for “iso-evolution” models solves this problem by computing a

number of traditional models with varying burst times, and from these interpolates the time

evolution at a certain evolutionary stage for any arbitrary age. The results are illustrated in

Fig. 2.9. As is clearly shown in this figure, both the colour-evolution as well as the evolution of

star formation rates is now sampled continuously, removing systematic effects originating from

an insufficient sampling of burst times. An obvious side-effect of this procedure, however, is that

the iso-evolution models do not necessarily start at a galaxy-age of zero, but rather are limited

by the minimum age of the input models and the age of the evolutionary stage of interest.

In addition to these two major improvements to the galev code itself I implemented a range of

smaller updates, such as additional information on the mass-weighted and luminosity-weighted

stellar ages and metallicities, new star formation histories, e.g. as given in Gavazzi et al. (2002). I

also added a new shape for the star formation prescription during a burst, removing the instan-

taneous increase of SFR with a gaussian-like rise that is then followed by an exponential decline.

This new shape prevents sudden changes in galaxy colours that I found to negatively affect the

accuracy of the derived photometric redshifts in the subsequent data analysis. More recently

I am working on a complete overhaul of the part of galev dealing with the computation of

isochrone spectra from the isochrones and stellar atmosphere libraries. When completed this

new part will not only tremendously simplify the currently very tedious procedure of adding

new input physics, but at the same time make the code faster and more efficient as well as more

flexible e.g. to relax the current assumption of a universal IMF by allowing for IMFs that change

with time and/or other properties of the galaxy.

In an effort to make the models publicly available and hence allow other researchers to use and

adapt them for their particular research projects I furthermore created and constantly update

the GALEV web-interface that is described in detail in Sect. 2.7. By the time of writing, i.e.
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mass of 1010M�.

over the course of the past two years since its start, this web-site was used by close to 200

researchers who computed in total ≈ 2000 models. Many of these users are young researchers

or graduate students, some of which use evolutionary synthesis models for their very first time,

also demonstrating the power of this webpage as a teaching and learning tool.

2.7 The web interface

We present the new web interface that enables everyone to run her or his model of choice in a

fast, easy to learn and easy to use, and comfortable way over the internet. The interface can be

found at

http://www.galev.org
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Using a web interface enables us to impose some checks previous to program execution dealing

with the most serious and frequently occuring problems. For the user this has the important

advantage of always having the latest version at hand, including the most up-to-date input

physics like isochrone sets and stellar libraries.

2.7.1 How to use the web-interface

The web-interface consists of four steps: two for the input of the model parameters and the

requested output, one for parameter checking and at last the actual running of the program on

the web-server.

Principal model parameters

On the first page the user has to decide which type of model (s)he wants to run. Those defining

parameters are

1. Galaxy type: choose between the most common types E, S0, and Sa to Sd for undisturbed

galaxies, for which the parameters described in Sect. 2.5.2 will be used. In addition we

offer free types, defining the shape of the SFH as described by eqs. 2.4–2.6. We also offer

instantaneous burst (SSP) models, as well as completely definable SFHs. For the latter

mode the user has to specify a file with SFRs as function of time in the next step.

2. Burst: we currently offer three possibilities: No burst, i.e. an undisturbed galaxy, a Burst

with given strength, duration, and exponentially declining SFR, beginning at some time tb

and SF Truncation with the SFR declining exponentially to zero on some specified timescale,

again from time tb on.

3. Number of filters for which magnitudes are to be computed.

If the user chooses to run a standard model for an undisturbed galaxy, i.e. an elliptical or spiral

galaxy, then galev in the following uses the parameters described in Sect. 2.5.2. For all other

cases, i.e. either user-defined galaxy types or models with burst/truncation, the parameters will

be entered in the following step.

Model configuration

Depending on the choices from the previous page the user might not have all possible parameters

to choose from; only the ones required for the specified model type will be shown. Those are:
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1. We offer a set of Initial Mass Functions (IMF), namely from Salpeter (1955) and Kroupa

(2001), both using the Lejeune (Lejeune et al., 1997, 1998) stellar atmosphere library. Further

IMF shapes (e.g. Chabrier, 2003) and different sets of stellar libraries are in preparation.

In a future release we plan to also allow the user to choose customised IMFs; this feature,

however, will be limited to SSP models (i.e. for star clusters).

2. Gaseous emission can be switched off or on, and the user can choose to include only

continuum emission or both continuum and line emission. In fixed metallicity models, the

gaseous emission is evaluated for the respective metallicity, in the chemically consistent

case, it is calculated appropriately as described in Sect. 2.3.3.

3. The metallicity: choose between chemically consistent models, i.e. those including all en-

richment effects described above, or a model with metallicity fixed to one of the following

values [Fe/H] = −1.7,−0.7,−0.4, 0.0, +0.4.

4. The galaxy type is shown as a reminder, but cannot be changed here any more. To change

the type the user has to go back to the first step.

5. Galaxy mass is another free parameter, mainly used for normalisation. We do not include

a mass-metallicity relation of any kind, so this parameter has no impact on the resulting

colours. Note that when galev is combined with a cosmological model to e.g. obtain

apparent magnitudes, the model galaxy mass can optionally gets rescaled to match, after

a Hubble time, the average B-band luminosity of local galaxies of the respective type in

Virgo.

6. SFH parameters: if (and only if) one of the free models has been chosen, then the variables

α (normalisation for the SFR of an elliptical model), τ (e-folding timescale of an elliptical

model), β (factor of proportion for spiral models), and ψ0 (constant SFR of an Sd model)

can be freely chosen by the user. The meaning of those parameters is explained in more

detail in Sect. 2.5.2. If in the previous step the user requested the SFH to be read from a

file this will be specified here. We caution the reader to carefully study the web-output

from galev, since depending on the chosen parameters there might be problems, e.g. a

SFR exceeding the amount of gas that is available.

7. If the user wants to compute a galaxy featuring a burst or SF truncation, then (and only

then) he/she has to specify the time of the onset of the burst, expressed in years after galaxy

formation and the e-folding timescale for the decline of the SFR during the burst. While

those two parameters are common to both truncation and burst, only in the latter case one

also needs to supply a burst strength. Following our definition of the burst-strength in

Sect. 2.5.3 (eq. 2.7), this specifies the fraction of gas available before the burst that is to be

converted into stars during the burst. If one instead wants to specify the SFR at the very

onset of the burst, SFR(t = tb), those two numbers can be converted into each other by

b = SFR(t = tb)× τb/Mgas(t = tb).
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8. galev currently supports two different extinction laws that can be applied to the spectra,

the Calzetti et al. (1994) law for starburst galaxies, and the Cardelli et al. (1989) Milky

Way extinction law, using the standard value of RV = 3.1. To compute colours for different

extinction values, the user can specify a maximum E(B-V) value and a step-size. The output

(see below) will then include multiple files, one for each extinction value in the requested

range.

9. Cosmological parameters need to be specified to model the evolution of galaxies with

redshift. The user can choose Hubble constant H0, ΩM, and ΩΛ, while ΩK is fixed to 0.

To convert ages into redshifts the user also has to select a formation redshift zform, so that

the age of the galaxy is given by age(z) = tH(z)− tH(zform) with tH being the Hubble time

at redshifts z and zform. Note that the modeling process is terminated at a galaxy age of

16 Gyr. A choice of cosmological parameters leading to a galaxy age of more than 14 Gyr

(e.g. too low a Hubble constant) hence results in an error-message, so that no colours will

be computed for this case.

10. Although galev offers a full range of different output options (see below), not all the

numbers will be actually needed for any specific application. The user can therefore use

the section Output parameter to restrict the output, leading to faster execution and smaller

downloads.

11. To compute magnitudes from the spectra the user can choose from a large list of filter func-

tions and also specify the magnitude system on which magnitudes are to be based (Vega,

AB or ST magnitudes) For each filter a different magnitude system can be chosen. This

eliminates the uncertainties involved in any a posteriori transformations between different

systems.

We also offer an extensive online help giving examples for different parameters and how they

affect the resulting SFH.

Output

In the following we will describe which outputs are available and also how they are computed.

1. The integrated spectra for each timestep are the most important output, since from those

all magnitudes and redshifted spectra are derived.

2. Convolving the spectra with the appropriate filter functions and applying the appropriate

zero-points gives us the magnitudes of the model as a function of time.

3. galev also delivers the most useful diagnostic data for each timestep, such as current

stellar and gaseous mass, star formation rates, ISM metallicity, and ionising flux NLyC.
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4. After applying a cosmological model to convert galaxy age into redshift (assuming a for-

mation redshift) we can compute the redshifted galaxy spectrum, that includes all evolu-

tionary effects. We also apply the intergalactic attenuation from Madau (1995) to account

for absorption of flux short-wards of Lyα by intervening neutral hydrogen clouds.

5. Convolving those redshifted spectra with filter functions FF(λ) and adding the bolometric

distance modulus gives us apparent magnitudes with and/or without attenuation, which

then can be used e.g. for comparison with observed SEDs to derive photometric redshifts

or ages and metallicities.

6. From the data described above we can derive cosmological corrections due to the shifting

of the filter functions to shorter restframe wavelengths (k-corrections) and evolutionary

corrections (e-corrections). Those corrections are computed as follows:

k(z) = −2.5× log

∫ ∞
0 f (t = t0, z, λ)× FF(λ)dλ∫ ∞
0 f (t = t0, 0, λ)× FF(λ)dλ

(2.8)

e(z) = −2.5× log

∫ ∞
0 f (t = t(z), z, λ)× FF(λ)dλ∫ ∞

0 f (t = t0, z, λ)× FF(λ)dλ
(2.9)

where f (t, z, λ) is the flux at wavelength λ of a galaxy of age t at redshift z, t0 the current

age of the universe (which depends on the specified cosmological parameters), and FF(λ)

a filter function.

Parameter checking and execution

As a third step in the modeling process we perform a quick check to ensure that all required

parameters are given and correspond to valid combinations. The page also displays all given

parameters to allow the user to check the input, and eventually perform corrections by going

back to the previous page. However, the tests performed are just basic validity tests and do not

ensure that the computed model makes physical sense.

In the fourth and last step, after the user has made sure that all input is correct, we create all files

necessary for the actual modelling. The execution of the galev program takes several minutes

to run. We urge all users to carefully read through the given output to check if everything ran

smoothly.

Directly after galev has created all spectra, it computes the magnitude evolution as a function

of time or redshift in all filters requested, again taking a few minutes to complete.

For compatibility reasons all output is given as human-readable ascii-files, with values aligned

in columns that are separated by spaces, so that the files can be easily analysed and/or plotted.
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The resulting files are then automatically combined and compressed into one archive (.tar.gz) file,

which can be downloaded. Each archive also contains a small ReadMe file listing the content of

each file. The meaning of individual columns are specified at the beginning of each file.

2.7.2 Upcoming features of the web-interface

In its current version the web-interface supports the most frequently used galev features like

computing spectra and colours. Further features, like the computation of Lick indices or colour

magnitude diagrams are currently in the process of being adapted and implemented into the

webpage and will be accessible online in the near future.

2.8 Future prospects

In the near future (Anders & Kotulla 2010, in preparation) we will offer further stellar libraries,

e.g. Munari et al. (2005) and Coelho et al. (2005), to be able to compute high-resolution spectra for

comparison with modern spectroscopic surveys. Those libraries have higher spectral resolution

and shorter wavelength coverage but are not colour-corrected in the way Lejeune et al. (1997,

1998) did for the Kurucz spectra to reproduce the observed colours of stars from the UV through

the NIR over the full range of effective temperatures.

One drawback of current galaxy evolutionary synthesis models is that they do not include a

self-consistent treatment of dust absorption and reemission. One factor contributing to this

difficulty are geometric effects and dependencies of dust masses and properties on gas content,

chemical abundances and eventually even radiation field. Early attempts to consistently include

dust absorption as a function of gas content and [Fe/H] in collaboration with D. Calzetti were

encouraging (cf. Möller et al., 2001) and showed that every undisturbed galaxy goes through a

phase of maximum extinction of E(B−V) ∼ 0.4. The redshift of this maximum E(B−V) phase

is determined by the interplay between decreasing gas content and increasing metallicity. The

predicted values at high-redshift z ≈ 3 (equivalent to a galaxy age of ≈ 2 Gyr) agree well with

observations from Steidel et al. (1999), Shapley et al. (2001) and Colbert et al. (2006).

Another aspect is the coupling of galev to a dynamical model (SPH + N-body + SF + feedback)

to cope with increasingly available data from Integral Field Units allowing spatially resolved

spectroscopy. Our early attempt to couple galev models for single stellar generations with

a cosmological structure formation simulation by M. Steinmetz was encouraging (cf. Contardo

et al., 1998) and showed that this approach is feasible. The simulated HST images of a galaxy

at different redshifts showed fairly good agreement with observations but ultimately failed to
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reproduce the correct local disk sizes and parameters. A better and more detailed description of

feedback seems to be required. This can only be obtained from an extensive comparison between

model results and resolved galaxy observations. The key issue is to have a correct criterion for

SF and a correct description of feedback on the relevant scales and over the full range of SF

activity – from the lowest levels in the farthest outskirts of galaxies to the highly clumped and

clustered SF in the strongest starbursts.

2.9 Applications

galev models have a wide range of applications from star clusters and resolved stellar popu-

lations of nearby galaxies through integrated properties of galaxies up to the highest redshifts.

A fair number of them have been explored so far, many of them hand in hand with refinements

or special features added to the models. Here we briefly recall a few of them to illustrate the

various features of galev.

2.9.1 Star clusters

The simplest stellar systems to study with galev are star clusters, so-called simple stellar pop-

ulations (SSPs) where all stars are formed essentially within one timestep and with the same

chemical abundances. galev models describe the time evolution of SSPs with different metal-

licities, including the gaseous emission during early evolutionary stages and as appropriate

for their respective metallicity. They can also incorporate extinction within the clusters’ parent

galaxy on the basis of empirical extinction laws from Calzetti et al. (1994) or Cardelli et al. (1989).

Using our AnalySED tool (Anders et al., 2004b,a), we can compare observations in widely spaced

broad-/medium-band filters to a grid of galev models and derive physical cluster parameters

such as ages, masses, metallicity, and extinction between the cluster and the observer If one of the

parameters can be externally constrained (e.g. dust-free environment, or metallicity previously

determined from spectroscopy) observations in at least 3 bands are required, otherwise at least

4 bands are needed. As a large number of star clusters can usually be covered by a single set of

observations, this is a very efficient way to study statistically significant cluster samples.

As shown both in studies based on artificial star clusters and on star clusters with ages and metal-

licities derived independently from CMDs, accuracies in age determination of ∆age/age ≤ 0.3

and in metallicity determinations of ∆[Fe/H]/[Fe/H] ≤ 0.2 are achievable, preferably if both a

short-wavelength band (U or B) and a NIR-band are included (Anders et al., 2004a; de Grijs et al.,

2003a; de Grijs & Anders, 2006). The U-band is crucial for accurate age-dating, and a NIR-band
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(H or K) for accurate abundances. We successfully applied these models in Anders et al. (2004b)

to the interpretation of the young star cluster systems in the starburst dwarf galaxy NGC 1569,

in Anders et al. (2007) to the analysis of the star clusters in the interacting Antennae galaxies

(NGC 4038/39), and in Appendix A to the derivation of ages and metallicities of the globular

clusters in the Virgo S0 galaxy NGC 4570.

2.9.2 Colour-magnitude diagrams

One special feature of galev is its ability to compute colour-magnitude diagrams (CMDs) in

any desired passband combination. This is possible not only for SSPs or instantaneous bursts,

but also for composite stellar populations with complex SFHs. This has successfully been used

to identify the best possible passband combination to disentangle age and metallicity effects in

star clusters in various age ranges (cf. Fritze et al., 2006).

In Fritze & Lilly (2007) we compared the SFH obtained from the CMD with those obtained

from the integrated spectrum, from Lick index measurements and from multi-band photometry

in their respective accuracies and limitations. The basic result was that none of the methods

allows to look back beyond a recent burst or some recent phase of enhanced SFR, and that all

methods face very similar accuracy limitations at look-back times beyond ∼ 1 Gyr. Only within

the most recent Gyr, CMD analysis achieves the most detailed SFHs (cf. Lilly & Fritze, 2005b,a).

The importance of this kind of comparative investigation lies in the fact that CMD analyses can

only be done for the resolved stellar populations within the nearest Local Group galaxies. All

attempts to explore the SFHs of more distant galaxies have to rely on integrated spectra and, for

the most distant ones, on integrated photometry only.

2.9.3 Undisturbed galaxies

In Bicker & Fritze (2005) we used galev models to study the effects of the chemical evolutionary

state of galaxies on their star formation rate indicators (Hα, [OII], NUV and FUV luminosities)

and found that all of them significantly depend on metallicity, with errors in the worst cases of up

to factors of a few, confirming previous observational evidence (e.g., Jansen et al., 2001; Hopkins

et al., 2003; Kewley et al., 2004).

In Schulz et al. (2003) study the time and redshift evolution of bulge-to-disk light ratios in

different wavelength bands by assuming a short timescale for SF for the bulge component

Ψbulge ∼ exp(−t/1 Gyr) and a constant SFR for the disk component Ψdisk ∼ constant. The

integrated spectral and photometric evolution of different spiral galaxy types was then obtained
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by adding up the bulge and disk components in mass ratios so as to give, after a Hubble time of

evolution, the observed average B-band bulge-to-disk light ratios for the respective spiral types

Sa through Sd. This study showed a significant wavelength dependence of the bulge-to-disk

light ratios in agreement with observations by Eskridge et al. (2002). This has implications for

galaxy classification in different redshift intervals. It also opens a new possibility to explore

bulge formation scenarios and bulge formation redshifts by comparing bulge-to-disk light ratios

measured in different bands.

Starbursts in Blue Compact Dwarf Galaxies

Starbursts were first investigated with galev models in the context of Blue Compact Dwarf

Galaxies (BCDGs) in a series of papers by H. Krüger (Krüger et al., 1991, 1992, 1993; Krüger &

Fritze, 1994; Krüger et al., 1995). These authors investigated a sample of BCDGs with optical and

NIR photometry in order to derive their burst strengths and the age of their underlying stellar

population. The main results we want to recall here are that even very weak ongoing bursts can

completely dominate the light in the optical, in particular at the low metallicities Z�/50 . . . Z�/5

typical for BCDGs. An underlying old galaxy component can only be detected in the NIR and

was found for every BCDG of our sample. Very accurate age-dating was possible for those

BCDGs which showed a 4600Å bump caused by WR-stars in their spectra. Burst strengths were

found to be of the order of a few percent only, when defined in terms of stellar mass increase.

They were also shown to systematically decrease with increasing galaxy mass, where the latter

included the important mass contributions of H i. This result is in agreement with expectations

on the basis of the stochastic self-propagating SF scenario put forward by Gerola & Seiden (1978)

and Seiden & Gerola (1979).

2.9.4 Interacting galaxies and mergers

In Fritze & Gerhard (1994a,b) we studied a grid of starburst models with bursts of various

strengths occurring in Sa, . . . , Sd spirals at different ages in their spectral, photometric and

chemical evolution and then analysed the starburst in the gas-rich massive spiral-spiral merger

NGC 7252. We found this burst to have started about 600 − 900 Myr ago and to have been

stronger by 1− 2 orders of magnitude than those in BCDGs. The bulk of information available

for this galaxy even allowed us to estimate the SF efficiency on the basis of a comparison of the

stellar mass formed during the burst.

Our conservative estimate for the overall SF efficiency (see equation 2.7) during this interaction-

induced starburst indicated a very high value SFE ≥ 0.35 (Fritze & Gerhard, 1994a,b; Fritze &
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Burkert, 1995), again about two orders of magnitude higher than any SFE measured for molec-

ular clouds in the Milky Way or the Magellanic Clouds, and high enough to allow for the

formation of a new generation of globular clusters (cf. Brown et al., 1995; Li et al., 2004). galev

models indicated that NGC 7252 at present still features a low-level ongoing SFR of ∼ 3 M� yr−1

in its centre, powered for ∼ 50 % by gas set free at present from dying burst stars and for ∼ 50 %

by H i falling back onto the main body from the tidal tails. Both of these gas delivery rates

will decrease over the next 1− 3 Gyr. Depending on whether the SFR will cease completely or

continue at some very low level, NGC 7252 will spectrally evolve into an elliptical or S0 galaxy

over the next 1− 3 Gyr. Already at present, NGC 7252 features an r1/4− light profile across a

radial range of ∼ 14 kpc, if azimuthally averaged (Schweizer, 1982a)

Independent confirmation for the unexpectedly high value found for the SFE in NGC 7252 came

from the detection of a rich population of massive compact star clusters with ages in agreement

with the global starburst age which, in turn, is in agreement with dynamical merger ages from

N-body + SPH simulations (e.g. Hibbard & Mihos, 1995). Spectroscopy of the brightest clusters

confirmed their metallicities to be between Z�/2 and Z�, as expected if they formed out of

the gas pre-enriched in Sc-type spirals – with some evidence for a moderate amount of self-

enrichment during the burst on the basis of their slightly enhanced [ff/Fe] ratios. In Fritze &

Burkert (1995) we estimated that the number of clusters with masses in the range of Galactic

globular cluster (GC) masses that formed in the burst and survived until the present is of the

same order of magnitude as the number of GCs present in two average-luminosity Sc-type spirals

before the merger. Hence, this spiral-spiral merger will, after the fading of the post-starburst and

after the fading and dissolution of the tidal features, evolve into an elliptical or S0 galaxy with

a normal GC specific frequency. GCs of age 0.5 . . . 1 Gyr have already survived the most critical

phase in their lives, the infant mortality and early mass loss stages, and stand fair chances to

survive for many more Gyr (cf. Lamers et al., 2005; Bastian & Goodwin, 2006; Parmentier &

Fritze, 2009).

In de Grijs et al. (2003b) we used galev SSP models to analyse the luminosity-weighted ages

pixel-by-pixel on ACS images of the interacting galaxies Tadpole and Mice and studied their star

cluster populations. A surprising result was that about 35 % by mass of all recent SF went into

the formation of star clusters in both galaxies, not only across the main bodies of both galaxy

systems but all along their very extended tidal tails.

In Temporin & Fritze (2006) we applied galev models to investigate the SF and starburst histo-

ries of galaxies in a very compact group of galaxies on the basis of multi-band photometry and

spectra and in Wehner et al. (2006) we studied the SF activity and its history in the extended

tidal debris surrounding the starburst galaxy NGC 3310.
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Tidal Dwarf Galaxies

Not only star clusters can form in the low-density environments of tidal tails but sometimes

even star-forming objects with masses in the range of dwarf galaxies: so-called Tidal Dwarf

Galaxies (TDGs), or better TDG candidates. In Weilbacher & Fritze (2001) and Weilbacher et al.

(2002, 2003b,a) we analysed the first reasonably sized sample of TDGs and found that they all

contain a stellar population inherited from the spiral disk out of which the tidal tail has been

torn, together with a significant young stellar population that must have been formed in situ

within the tidal tail after it had been ejected. A characteristic feature of TDGs is that they do

not follow the luminosity-metallicity relation of dwarf galaxies but all have similar metallicities

characteristic of the H ii region abundances in spiral disks.

Again it turned out that optical observations alone are not sufficient to disentangle the mass

contributions of the inherited versus the starburst components. Even a 90 % mass fraction in the

inherited component can be entirely hidden in the optical by an ongoing burst that only makes

up for 10 % of the mass. Only in optical-NIR colours can the inherited component be detected

that is not entirely old but contains the mix of stellar ages present in the disk before the tidal tail

was thrown out.

2.9.5 Galaxy transformation in groups and clusters

A variety of scenarios are discussed in the literature to explain the transformation of the spiral-

rich field galaxy population into the S0-/dSph-/dE-rich galaxy population observed in rich

galaxy clusters at low redshift. The following processes have been proposed: High-speed disrup-

tive galaxy-galaxy interactions called harassment, interactions between galaxies and the dense

hot Intra-cluster Medium (ICM), and enhanced merging within infalling groups. All of these

scenarios are observed to be at work in a number of individual cases. Their relative importance,

their timescales, transition stages, and end products, however, are not known yet. All of these

transformation processes both affect the morphological appearance of galaxies and – via their

SF histories – their spectral properties. How the timescales for morphological transformation

and spectral transformation relate to each other in the various scenarios and environments is

not clear to date. Removal of gaseous halos, outer, and inner H i disks leads to SF strangula-

tion on long timescales or to SF truncation on shorter ones. Destabilisation of disks through

encounters or shocks as well as mergers within infalling groups may lead to starbursts. We

explored aspects related to the spectral transformation of galaxies through all these scenarios

and investigated which scenarios in which type of progenitor galaxy and at which evolutionary

stage can lead to the observed luminosity and colour ranges of S0 galaxies by implementing

SF strangulation/truncation on different timescales with and without preceding starbursts into
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galev models in Bicker et al. (2002). In Falkenberg et al. (2009a,b) we extended the models to

also include the evolution of the D4000 and Hδ Lick indices into the galev models for galaxy

transformation and investigated under which conditions the so-called E+A-, or k+a-, and the

Hδ-strong galaxies (cf. Poggianti et al., 2004; Dressler et al., 2004) are formed, what is the lifetime

of this respective phase, what is the colour and luminosity of the galaxy in this transition stage

and what is the end-product.

2.9.6 High redshift galaxies and photometric redshifts

If coupled to a cosmological model, galev can be used to study the evolution of galaxies from

the very onset of SF in the early universe until today. Accounting for the significantly sub-

solar metallicities observed at high redshifts – in particular when dealing with intrinsically faint

galaxies that dominate in deep field surveys – allows us to determine more accurate photomet-

ric redshifts, as compared to those obtained with solar-metallicity models only (Chapter 5) or

observed templates.

In Fritze & Bicker (2006) we examined starbursts and their respective post-starburst stages across

a wide range of redshifts with the surprising result that dust-free models in their long post-burst

phases after strong starbursts at high redshifts can get the colours and luminosities of Extremely

Red Objects (EROs) as e.g. observed in the K20-survey (cf. Daddi et al., 2002; Cimatti et al.,

2002a,b).

Only when we also include – in addition to our set of undisturbed models E, Sa, . . ., Sd – the

very blue starburst phases and also their extremely red post-burst phases can we reproduce the full

range of colours observed e.g. in the Hubble Deep Fields (Chapter 6). In Fig. 2.10 we show the

F606W-Ks (approx. V-K) colour evolution for a set of undisturbed models E, and Sa through Sd,

and for models with major starbursts (burst strengths chosen to consume 70% of the in each case

available gas) occurring at different ages in a previously undisturbed Sb galaxy. A comparison

to the photometric galaxy catalog of Fernández-Soto et al. (1999) for the HDF shows that galev

models can describe the full colour range, even without any dust. Note that dust certainly plays

a role in ongoing starbursts but not any more during post-burst stages. Apparently, as observed

in the local Universe, galaxies use up and destroy part of their dust in starbursts, while the rest

is blown away by the end of the burst.

2.9.7 Redshift evolution of ISM abundances: spiral models vs. DLAs

The SFHs of our closed-box model galaxies were constrained by requiring agreement after 12−13

Gyr of evolution not only with observed spectrophotometric properties of the various galaxy
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types but also with their gas content and ISM abundances (cf. Sect. 2.5.2). While this en-

sures agreement at the present stage it needs not necessarily imply agreement over the entire

evolutionary path. Some subtle interplay between SFR and infall rate, e.g., could lead to the

present-day agreement after ages of disagreement. Infall rates are very hard to constrain from

a comparison with spectrophotometric properties alone. They can, however, be constrained by

comparing chemical abundances. It is therefore of prime interest to compare the redshift evolu-

tion of ISM abundances to observations of high-redshift galaxies.

Transforming the time evolution of ISM abundances into a redshift evolution only requires the

one-to-one transformation between galaxy age and redshift that is given by any set of cosmolog-

ical parameters (see. Sect. 2.3.9)

Damped Lyman-α absorbers (DLAs; see Wolfe et al., 2005 for a review) are a particular class of

absorption systems, usually observed in the line-of-sight of quasars, with damping wings on the

Lyman-α line due to the high column densities of neutral hydrogen of N(HI) ≥ 2× 1020 cm−2 in

the absorbers. The damped Lyman-α line is always accompanied by a number of low-ionisation

heavy element lines, many of which are the dominant ionisation states in those absorbers. DLAs

are most easily observed in the redshift range z ∼ 2 to z > 4 and have been proposed to be

potential progenitors of present-day spiral disks: Their H i column densities are similar to those

in local gas-rich disks and their gas content, derived from rotational velocities of the order

100 . . . 200km s−1, is similar to gaseous plus stellar masses in local spirals. In Lindner et al. (1999)

we compared the redshift evolution of our spiral galaxy models, calculated in a chemically con-

sistent way with stellar yields for a large number of elements and 5 different stellar metallicities

to the first reasonably sized set of Keck HIRES abundances for DLAs from the literature. We

found surprisingly good agreement for all the different abundances over the entire observed
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redshift range with our closed-box models.

Studying the impact of various amounts of infall showed that it was not possible to accommodate

more than a moderate amount of infall, increasing the total mass from redshift 2 until the present

by not more than a factor ∼ 2, without losing agreement with either the spectral or the chemical

properties or both, no matter how we tuned the SFH. We hence concluded that from a chemical

evolution point of view DLAs might well be the progenitors of present-day spiral galaxies of all

types Sa . . . Sd and that those are reasonably well described by closed-box or moderate-infall

models. This implies that DLAs have already almost all the mass of present-day spirals – albeit

almost completely in the form of H i gas. galev models indicated low stellar masses and low

luminosities for DLA galaxies, in agreement with the large number of non-detections/upper

limits. Mass estimates from rotation velocities derived from detailed modeling of asymmetries

detected in some DLA profiles confirmed our mass predictions (cf. Wolfe et al., 2005). galev

models also predicted a change in the DLA galaxy population from high to low redshift and

showed that the DLA phenomenon can be understood as a normal transition stage in the life

of every spiral. During their enrichment process to higher metallicities they convert their gas

reservoir into stars, therefore get increasingly gas-poor so that above a certain metallicity they

drop out of DLA samples due to too low a gas content (cf. Lindner et al., 1999, for more infor-

mation). This is in agreement with observations that show the lowest redshift DLA galaxies to

be low-luminosity late-type or irregular galaxies.

2.10 Summary

This Chapter presents the galev evolutionary synthesis models for star clusters, undisturbed

galaxies and galaxies with starbursts or/and star formation truncation now available on the web

at

http://www.galev.org

We describe the input physics currently used, which will continuously be updated.

For a number of different stellar IMFs, the spectral evolution of star clusters of metallicities in

the range −1.7 ≤ [Fe/H] ≤ +0.4 can be calculated, and a large number of filter systems are

available for the photometric evolution as well as the full set of Lick absorption indices.

galev features a unique combination of characteristics that allow for what we call a chemically

consistent modelling of the chemical evolution of the ISM together with the spectral evolution of

the stellar component.
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This means that the initial abundances of every stellar generation are accounted for by using

input physics (stellar evolutionary tracks, stellar model atmospheres, gaseous line and contin-

uum emission, stellar lifetimes, yields and remnant masses) appropriate for the increasing initial

abundances present at the formation time of successive stellar generations. This chemically

consistent modeling accounts for the observed broad stellar metallicity distributions in local

galaxies as well as for the increasing importance of subsolar abundances in local late-type and

low luminosity galaxies and in high redshift galaxies.

Galaxy models can be calculated either in the chemically consistent way or for some fixed metal-

licity upon request. Models give spectra, emission line strengths and Lick absorption features,

photometric quantities for a large number of filter systems, and chemical abundances, gaseous

and stellar masses, star formation rates, etc. in their time evolution for normal galaxies, galaxies

with starbursts or/and star formation truncation as specified by the user or for user customised

star formation histories.

If a cosmological model is selected, all quantities are also provided in their redshift evolution,

fully accounting for evolutionary and cosmological corrections and including the attenuation by

intergalactic neutral hydrogen.

We present the models, the input physics they use, their calibrations, the web interface and some

examples of selected applications for illustration and we discuss current limitations and future

prospects.
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Chapter3
Galaxies to the redshift desert and beyond

I. Evolutionary synthesis modelling

Abstract:

Evolutionary synthesis models are a ideal tool to study the formation and evolution of galaxies
with respect to their stellar populations. Here we present an extensive grid of chemically consis-
tent galev evolutionary synthesis models that include the spectral and chemical evolution of
galaxies in a chemically consistent way, i.e. accounting for the increasing initial abundances of
successive stellar generations.

Our model grid contains undisturbed E and Sa-Sd type galaxies as well as a wide range of
models undergoing starbursts of various strengths and at different times and also includes the
subsequent post-starburst phases for these galaxies. For each model we trace star formation
rates, stellar and gaseous masses, metallicities and the evolution of spectra and magnitudes for
a wide range of filters from the formation in the early universe until today. Our models include
both evolutionary and cosmological corrections as well as the attenuation by intergalactic Hi.

Our main findings are: a) At redshifts z & 3 all galaxy spectra look alike and very similar to
starburst spectra; b) evolutionary corrections are crucial for all kinds of studies with extreme
values reaching up to −12 mag; c) even weak bursts can completely dominate the galaxy spec-
trum, leading to significantly underestimated galaxy ages and masses if not taken into account
properly; d) post-starburst phases are extremely important since they last considerably longer
than starburst phases; e) post-starbursts even with relatively recent bursts result in galaxy spec-
tra very similar to that of local ellipticals and define a narrow, maximally red post-starburst
sequence as function of redshift;

All model data, i.e. spectra, magnitudes, cosmological and evolutionary corrections for a wide
range of filters as well as star formation rates, stellar and gaseous masses, and metallicities,
are available online at http://www.galev.org. A comparison to multi-wavelength photometric
observations of a wide range of high redshift galaxies from the bluest Lyman Break Galaxies to
Extremely Red Objects is the subject of Chapter 4.

http://www.galev.org
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3.1 Introduction

Most of our current knowledge on galaxy formation and evolution originates from observations

of the electromagnetic spectrum emitted by galaxies at a range of redshifts and hence look-back

times. This holds in particular for studies of the optical and near-infrared light emission that

is dominated by stars. Over the years a wide range of tools have been developed to derive star

formation histories (SFHs), i.e. the evolution of star formation rates (SFRs) with time or redshift.

For local galaxies (D . 10 Mpc) that can be resolved into individual stars colour-magnitude

diagrams analyses are the most effective way (Smecker-Hane et al., 2002; Aloisi et al., 2007).

Determination of ages and metallicities of star clusters (Hempel et al., 2003; Anders et al., 2004b,

2007; Pasquali & Castangia, 2008; Beasley et al., 2008; Appendix A) extends the range to larger

distances (D < 100 Mpc). For all galaxies further away we purely have to rely on studies of the

integrated light. Common approaches in this case are the comparison of the full spectrum or

spectral indices to predictions of either Simple Stellar Populations (SSPs) (e.g. Pickles, 1985a,b;

Howell, 2005; Tojeiro et al., 2007), models with constant or exponentially declining star formation

rates (Shapley et al., 2004, 2005; Erb et al., 2006b; Chen et al., 2009), or combinations of both

approaches (Kauffmann et al., 2003; Salim et al., 2005; Erb et al., 2006b; Pozzetti et al., 2007). The

main drawback of all those approaches is that they are only viable for the most massive galaxies

at each redshift that are bright enough for spectroscopy. Typical intermediate and low-mass

galaxies at larger distances or cosmological redshifts that dominate the number counts, however,

are beyond the limits of modern spectrographs. Studies of statistical samples hence have to rely

on photometric data alone and their intrinsic properties can only be derived by comparison to

models of galaxy evolution.

This applies in particular to galaxies in the so-called redshift desert from z = 1.4 to z = 2.5 (Stei-

del et al., 2004). Galaxies in this redshift range lack strong emission lines in the optical window

that is most easily accessed by optical spectroscopy, requiring either UV-sensitive spectrographs

to obtain redshifts from Lyman-α, or NIR spectroscopy to access the rest-frame optical emission

lines. However, the cosmic epoch corresponding to this redshift desert is of particular interest

since it not only encompasses a doubling in the age of the universe but also marks the peak of

cosmic star formation activity and hence mass assembly and chemical enrichment (Madau et al.,

1996, 1998; Blain et al., 1999; Hartwick, 2004; Juneau et al., 2005; Reddy et al., 2008), as well as

the peak of bright QSO activity (Schmidt et al., 1995; Pei, 1995; Fan et al., 2001; Babbedge et al.,

2006; Brown et al., 2006; Richards et al., 2006).

Evolutionary synthesis models such as galev (Bicker et al., 2004; Chapter 2), galexev (Bruzual

& Charlot, 2003), and pegase (Fioc & Rocca-Volmerange, 1997) among many others are an ideal

utility to model galaxy evolution and enable a more detailed insight into the properties of these

galaxies. They allow to track the evolution of a wide range of physical parameters such as
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spectra, luminosities, and, if also gas is considered in the modelling, relative gas fractions and

metallicities.

One of the crucial requirements for the photometric study of any galaxy population at cosmo-

logically significant redshifts is the knowledge of cosmological (k-) corrections to compensate

for the shift in filter response curves relative to the intrinsic spectrum. This filter-dependent k-

correction can be obtained relatively easily from observed (Humason et al., 1956; Oke & Sandage,

1968; Coleman et al., 1980; Frei & Gunn, 1994; Assef et al., 2008) or model spectra (Bruzual, 1983;

Poggianti, 1997; Bicker et al., 2004). Evolutionary corrections, i.e. corrections describing the in-

trinsic evolution due to stellar evolution and a change in the stellar population mix, on the other

hand are much harder to derive from observations, although there were some attempts (e.g.

Sandage, 1961, 1988), but can easily be computed from evolutionary synthesis models for which

the evolution of all their respective predicted quantities is known exactly (Tinsley, 1970; Bruzual,

1983; Poggianti, 1997; Bicker et al., 2004).

Events that dramatically change the intrinsic properties of galaxies and that can easily be studied

with evolutionary synthesis models are starbursts, i.e. short phases of enhanced star formation,

with the strongest ones most likely triggered by a merger of two gas-rich galaxies. Observational

studies of this topic (Hibbard & van Gorkom, 1996; Murphy et al., 2001; Laine et al., 2003; Rossa

et al., 2007) mostly have to rely on a sample of galaxies in different stages of the merging process,

rendering the identification of typical versus peculiar features a difficult task. Evolutionary syn-

thesis, however, enables a much easier approach and also allows to explore the whole parameter

space without observational restrictions. This becomes even more relevant for studies target-

ing galaxies in the early universe, where galaxy densities were much higher and subsequently

galaxy mergers appeared more frequently (Carlberg et al., 1994; Le Fèvre et al., 2000).

The detailed knowledge about both quiescent and starbursting modes of galaxy formation and

evolution is crucial for studies of galaxy populations in the high-redshift universe. An unbiased

comparison to observations furthermore requires that models are able to reproduce the wide

range of galaxy evolution scenarios found in observations and as accurately as possible describe

true galaxies, i.e. they have to include not only the spectral but also the chemical evolution of

galaxies as well as the additional emission from gas ionised by young stars.

For this purpose we here present a large grid of galev evolutionary synthesis models, includ-

ing undisturbed galaxies as well as of galaxies encountering bursts at different stages during

their evolution over a Hubble time from the onset of star formation shortly after the Big Bang

until the present. We present their spectral and chemical evolution and show the impact of evo-

lutionary corrections and sub-solar metallicities. For the models with burst we also demonstrate

the impact of varying burst time, duration and strength on the resulting galaxy spectrum. This

grid provides an insight into the evolution and transformation of galaxies, aiming at establishing
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links between the different galaxy populations found both locally and at high redshift.

This chapter is organised as follows: After a description of our galev models (Sect. 3.2) we

present the evolution of spectra (Sect. 3.3) and spectral energy distributions (SEDs, Sect. 3.4).

Sect. 3.5 describes the evolution of galaxies undergoing a starburst, which is followed by a sum-

mary in Sect. 3.6.

In the next chapter (Chapter 4) we will apply our results from our modelling to empirically de-

rived colour selection criteria and compare observationally derived physical properties (masses,

star formation rates and metallicities) of galaxies at a range of redshifts to predictions obtained

with our models.

3.2 Chemically Consistent GALEV models

Our chemically consistent galev evolutionary synthesis models allow us to model galaxies

with arbitrary star formation histories (SFHs). The models not only take formation of stars from

gas and the subsequent stellar evolution into account, but also compute the chemical evolution

of the galaxy. We use this chemical enrichment history (CEH) to assign to each stellar generation

spectra, yields, and lifetimes appropriate for their particular initial metallicity, thus allowing for

what we call “chemically consistent” treatment.

As shown in Chapter 5, appropriately accounting for sub-solar metallicities stellar (sub-)populations

becomes increasingly important towards higher redshifts, in particular when analysing deep

field multi-band imaging data that give access to intrinsically faint galaxies.

All our models assume the “closed-box” approximation without gas-infall or outflows, perfect

and instantaneous mixing of the stellar ejecta and the ISM. While we acknowledge that this is a

clear limitation of our current method, we want to find out how far this simplified approach can

explain the observations, and where we need to refine it in the future to improve this agreement.

The input physics we use for our models are detailed in Chapter 2. We recall that our models

refer to spectral types of galaxies and caution that the one-to-one correspondence between spectral

and morphological galaxy types observed in the local universe might not hold out to arbitrarily

high redshifts.

Using a concordance cosmological model with H0 = 70 km s−1 Mpc−1, ΩM = 0.30, ΩΛ = 0.70

(Spergel et al., 2007; Komatsu et al., 2009) we assign a redshift to each galaxy age, assuming that

all galaxies started forming stars at redshift zform = 8. This formation redshift is in agreement

with current evidence for the epoch of reionisation between z = 6 and z = 10 (Becker et al., 2001;

Fan et al., 2006). Note that small changes to the formation redshift as suggested by Noeske et al.
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(2007b) do not significantly affect our results, since the properties of local galaxies do not change

much with the small changes in age imposed by formation redshifts varying between z = 6 and

z = 10.

3.2.1 The model set

Our basic set of models consists of the spectral types E and Sa through Sd, identical with the

ones described in Chapter 2. They are calibrated to reproduce typical colours from UV to NIR,

gas content and abundances of local galaxies of their type.

This set of models, however, fails to reproduce the bluest and reddest colours observed in current

deep fields. For this reason we supplement the basic set with a set of galaxies encountering

strong bursts at various ages. For those cases the assumption of a “closed box” model is most

likely not justified, since starbursts are generally triggered by external factors such as galaxy

interactions. We therefore use input physics, mainly stellar evolution data and spectra, for a

metallicity fixed to half the solar value (Heavens et al., 2004). All burst models start as an

undisturbed Sb-model, and encounter a burst that transforms 75% of the gas remaining at the

onset of the burst into stars. The time of the onset of burst is varied from 0.5 Gyr to 10 Gyr in

steps of 0.5 Gyr. At every redshift, these 20 burst models cover the range from a starting burst,

an ongoing burst, a young and an old post-starburst model, and they successfully reproduce the

full range of observed colours.

3.2.2 Comparison to semi-analytic models of hierarchical galaxy formation

Current cosmological simulations (e.g. Springel et al., 2005, 2008) generally find that galaxies

evolve hierarchically, meaning that small building blocks form first and subsequently merge to

form increasingly massive galaxies. There has been considerable progress with semi-analytical

models using a combination of first principles combined with empirical relations in order to

model the evolution of galaxies in this hierarchical formation scenario (Kauffmann et al., 1999;

Cole et al., 2000b; De Lucia et al., 2004; Bower et al., 2006; Croton et al., 2006; De Lucia & Blaizot,

2007; Lacey et al., 2008; Fontanot et al., 2009)

At first glance our approach to model individual galaxies via the time evolution of their star

formation history seems in contradiction to this scenario as it does not include the build-up of

galaxy mass by a number of major and/or minor mergers. However, the main goal of this chapter

is to first present how average galaxies evolve without major mergers; these are described later in

the context of models with starbursts. In semi-analytical models minor mergers are assumed to
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mostly replenish the gas reservoir that is available to fuel star formation (Kauffmann et al., 1999;

Croton et al., 2006). This effectively slows down the gas consumption and increases the SFR

which we assume to be proportional to the gas-mass. If significant amounts of gas get accreted

this can transform the galaxy into a galaxy of later spectral type. A galaxy starting as Sa-type

model would then, for example, be gradually converted into an Sb- or even Sc-type galaxy and

hence also follow the evolution of this later galaxy type.

Major mergers, i.e. mergers of two galaxies with roughly equal masses m1 : m2 ≤ 1 : 3 (Kauff-

mann et al., 1999), on the other hand, convert all available gas into stars and combine these

newly born stars with the previously existing stars into a central bulge component. This sce-

nario is similar to our models including a strong starburst as described in Sect. 3.5 where we

assume that galaxies consume most (75%) of the available gas in a exponentially declining burst.

We compare different burst decline times as well as different burst times and burst strengths

to study how these affect the resulting colour evolution. We also computed some models with

non-zero SF after the burst to study the effects of gas-accretion onto a passively evolving galaxy,

often referred to as “frosting” (Trager et al., 2000, 2008; Allanson et al., 2009).

We again stress that we aim at describing the average representation of a galaxy of a given type

and not, as consequence of an intentionally limited set of input parameters, the full range of

variations that can be found observationally. This approach also validates our use of analytical

SFHs instead of an full evaluation of merging histories that generally differs from galaxy to

galaxy. However, if averaged over large numbers of galaxies, these merging histories – even

in the case of elliptical galaxies with their generally complex histories – closely resemble our

analytical SFHs. This is well illustrated in Figs. 2 and 3 of De Lucia et al. (2006), showing the

complex SFH of individual elliptical galaxies and the resulting smooth SFH when averaged over

a large number of galaxies. Observational reconstructions of SFHs of elliptical galaxies (e.g.,

Gavazzi et al., 2002; Heavens et al., 2004) confirm this result.

Another key component that can dramatically change the spectral shape of a galaxy is redden-

ing due to dust. Semi-analytical models generally assume the dust to be closely related to some

observed parameter such as the B-band luminosity (Kauffmann et al., 1999). While this parame-

terised approach is a well-working simplification, it is still unclear how to describe the evolution

of dust reddening from first principles. This is mostly due to the large number of contribut-

ing factors such as unknown geometry and inclination, the way dust is distributed relative to

stars, changes of the dust contribution with metallicity and radiation field, just name a few. We

therefore decided to create models without dust attenuation and instead treat the amount of

dust as a free parameter that can be constrained observationally with SED fitting techniques.

We stress again that the observation of the full SED should allow to very precisely analyse the

contribution of dust reddening of galaxies versus reddening by passive evolution of an older
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stellar population as show by GALEV models (see Sect. 4.4.4 and Fig. 4.10).

In these respects we offer an alternative and complementary approach to the aforementioned

hierarchical galaxy formation models in that we do not model each galaxy or dark matter halo

individually but offer a more detailed insight into several aspects of galaxy evolution.

3.3 Spectral modeling

3.3.1 Impact of evolution on spectra

In Fig. 3.1, we present spectra for three different galaxy types E (upper panel), Sa (central panel)

and Sd (lower panel) representing three very different star formation histories at four different

galaxy ages of t = 0.9 Gyr, t = 2.6 Gyr, t = 5.1 Gyr and t = 12.8 Gyr, corresponding to redshifts

of z = 0, z = 1, z = 2, and z = 4, respectively.

The evolution of the constant SFR Sd-model in the lowest panel is dominated by the accu-

mulation of low-mass, long-lived stars that dominate the light emission at long wavelengths

λ ≥ 4000 Å. The constant SFR of this galaxy model leads to an almost constant light output at

UV wavelengths that is dominated by young, massive, short-lived stars, remains constant. Small

differences are attributed to the metallicity increasing over time (see below)

In the case of the Sa- and even more so for the E-model, the increasing SFR towards higher

redshifts or younger ages has a dramatic impact on the overall spectral shape. The rest-frame

UV of the Sa-model increases by a factor of & 20 from z = 0 to z = 4. The optical light emission

increases only by a factor of ≈ 3 and is mostly driven by the lower mass-to-light ratios of the

younger populations.

For the E-model with its rapidly declining SFR, evolution plays an even greater role. The rest-

frame UV emission that is very low at z = 0 relative to the flux long-wards of 4000 Å increases

by a factor of 104, the rest-frame optical by a factor of ≈ 10 from z = 0 to z = 4.

Comparing all the spectra for E-, Sa and Sd-models at redshift z = 4 clarifies another aspect that

is shown more clearly in Fig. 3.2. With increasing redshift galaxies look more and more alike,

and at very high redshifts they all look like a starburst galaxy observed in the local universe.

This, however, is not surprising if one takes a closer look at the star formation rates as function

of redshift: At redshift z = 4 (corresponding to a galaxy age of 0.9 Gyr) , the typical L∗ elliptical

galaxy has a SFR of 180 M�yr−1, or a specific star formation rate sSFR = SFR/Mstars = 8.2×
10−10 yr−1. An L∗ Sa-model for comparison, has a SFR of ≈ 14 M� yr−1 and a sSFR of 1.15×
10−9 yr−1, only 40 % higher than that of the E-model (also see Figs. 3.7 and 3.8).
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Figure 3.1: Spectra for the spectral types
elliptical (top panel), Sa (central panel) and
Sd (lower panel) at four different ages of
12.8, 5.1, 2.6 and 0.9 Gyr, corresponding to
redshifts z=0, z=1, z=2, and z=4.

This naturally explains the unsuccessful searches for high-redshift “red and dead” ellipticals, i.e.

galaxies with predominantly old stellar populations and only little ongoing SF at redshifts z & 3

(van Dokkum et al., 2003; Franx et al., 2003; Grazian et al., 2006; Conselice et al., 2007; Quadri

et al., 2007b). It also explains the observational evidence for the need of starburst templates for

photometric redshifts (e.g. Coe et al., 2006) and the findings of larger fractions of star-forming

galaxies towards higher redshifts (e.g. Dye et al., 2008). In a very simplistic estimation we assume

that all stars are formed at the same time and that this population has to be ≥ 1.5 Gyr old to

feature a spectrum similar to that of an passive galaxy. Assuming a formation redshift of z = 8

we only can expect to observe this red and dead galaxy population at z ≤ 3. For more realistic

assumptions of SF being spread out over a longer timescale, red and passive galaxies are not

expected above even lower redshifts.
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Figure 3.2: Comparison of spectra for three
different spectral types E, Sa and Sd for
three different ages of 12.8 Gyr (top panel),
5.1 Gyr (middle panel) and 1.5 Gyr (lower
panel), corresponding to redshifts z=0, z=1
and z=3. All spectra are normalized to
have unit flux at 0.55micron.
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Our model SFRs compare well to SFRs deduced for Lyman Break Galaxies (LBGs) at redshift z =

3, as e.g. from Shapley et al. (2001). Their “old” galaxies are described by star formation ages in

excess of 1 Gyr, stellar masses > 1010 M� and SFRs > 30 M�yr−1. A typical elliptical (Sa) galaxy

at this redshift has an age of 1.5 Gyr, a stellar mass of 3× 1011 M� (2× 1010 M�) and a SFR of

≈ 100 M� yr−1 (11 M� yr−1). Hence already our undisturbed models can successfully reproduce

the SF properties of this LBG population. Their “young” LBG population with stellar population

ages ≤ 35 Myr, however, can either be explained by a massive starburst happening shortly before

that redshift or by a formation redshift closer to redshift z = 3. This later possibility has been

studied in detail by Noeske et al. (2007b,a) in the context of staged galaxy formation. A detailed

comparison with observations is the topic of Chapter 4.
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Figure 3.3: Spectra for an E-type (top panels), Sa-type (middle panels) and Sd-type model (lower panel) for two different
ages 12.8 Gyr (z=0, left panels) and 1.5 Gyr (z=3, right panels), modelled chemically consistent (red lines) and with fixed
to solar metallicity (green lines). Shown for comparison are local templates (blue lines) from Coleman, Wu, & Weedman
(1980).

3.3.2 Evolutionary effects

In Fig. 3.3, we compare spectra with evolution (shown in red) to local observed templates from

Coleman, Wu, & Weedman (1980) without evolution. While our models and the observed tem-

plates match very well at redshifts z = 0 (left column), they are very different at higher red-

shifts, e.g. at redshift z = 3 (right column in Fig. 3.3). By redshift z = 3, the elliptical model has

changed completely, and now shows a very prominent peak in the UV due to the strong ongoing

star formation. Also the peak in the optical has shifted, so that the optical continuum spectrum

now very much resembles the spectrum of an A-star without the deep Balmer absorption lines.

The spectrum of the Sa-model at redshift z = 3 also has a much more prominent rise in the UV

short-wards of the 4000Å break. Emission lines in the optical are now much stronger than for

local galaxies. Least affected by evolution is the Sd-type spectrum. Its UV part has remained al-

most constant; the optical, however, at higher redshift has a much stronger rise to the blue, since

cooler, long-lived low-mass stars with relatively red colours only had little time to accumulate

and hence are much less abundant at younger ages than is the case for local galaxies.

The comparison of the redshifted model spectra that account for evolutionary effects with red-

shifted local galaxy template spectra (e.g. those from Coleman, Wu, & Weedman, 1980) very



Sect. 3.3: Spectral modeling 81

clearly shows the importance of evolutionary corrections that can only be obtained from evolu-

tionary synthesis modeling. They become increasingly important towards higher redshifts (i.e.

younger galaxy ages) and, as expected, are more important for early-type galaxies that have seen

strong changes in their SFR than for late-type galaxies with their comparably constant SFRs.

3.3.3 Impact of sub-solar metallicities on spectra

A crucial, although frequently neglected, parameter to describe galaxies, and high redshift galax-

ies in particular, is their metallicity. This can be measured either as ISM abundances from emis-

sion lines (e.g. Kewley & Dopita, 2002; Tremonti et al., 2004; Nagao et al., 2006) or as stellar

abundances from stellar absorption line features, such as e.g. Lick indices (Worthey et al., 1994;

Lilly & Fritze, 2006). Bicker & Fritze (2005) showed that using solar metallicity calibrations to

derive the SFR of sub-solar metallicity galaxies overestimates the true SFR by a factor of up to

two and underestimates ages by the same factor. Such low-metallicity environments are found

not only in local late-type spirals, irregular and dwarf galaxies, but in most if not all normal

high-redshift galaxies.

In Fig. 3.3, we also compare models of three different spectral types at two different redshifts,

one computed using our chemically consistent approach taking the chemical evolution into ac-

count, and one using a metallicity fixed to the solar value. We furthermore show how observed,

local galaxy templates would look like at those redshifts. Those represent the case without any

evolution, neither in terms of metallicity nor in terms of their stellar population age.

At redshift z = 0 our models match the observed templates very well; this is expected since we

use local templates to calibrate our models. The mismatch short-wards of ≈ 0.3µm can arise

from two reasons: The observed models might contain some dust, that absorbs UV-flux at those

wavelengths, but is not included in our models; or our model galaxy has a higher SFR and hence

higher UV luminosity than the observed template galaxy.

With one exception (our Sa-type model at z = 0), the chemically consistent models predict a

significantly higher flux at UV- and optical wavelength and comparable fluxes long-wards of the

rest-frame H-band at λ ≈ 1.5 µm. This higher luminosity translates into a lower mass-to-light

ratio and hence an overestimation of the mass of the galaxy. In addition to this metallicity effect

the application of mass-to-light ratios derived from local, and hence old and relatively metal-

rich, galaxy templates to galaxies in the distant universe results in an even larger overestimation,

as can be seen from the blue curves in Fig. 3.3.

Metal-poor stars are not only brighter but also hotter than their equal-mass solar-metallicity

counterparts. Sub-solar metallicities thus lead to bluer SEDs. Not taking this properly into
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account results in photometric redshifts being significantly underestimated (Chapter 5). Fur-

thermore the strength of emission lines as well as line ratios depend heavily on metallicity with

sub-solar metallicities generally resulting in stronger emission lines (Bicker & Fritze, 2005; Chap-

ter 2). This has recently been studied by Schaerer & de Barros (2009).

3.4 Spectral Energy Distributions

Although spectra carry more information then magnitudes (e.g. about dynamics), they are very

difficult to obtain for distant, faint galaxies. For that reason one is frequently constrained to

rely on coarsely sampled spectral energy distributions (SEDs) from broadband photometry. We

therefore present in the following the imprint that evolution and chemical evolution make on

SEDs, constructed from photometry from UV to NIR, using Bessell U, B, V, R, I and 2MASS-like

J, H, and K filters. The data for a wide range of filters can be obtained from our web-site at

http://www.galev.org.

In addition to intrinsic parameters like galaxy type and mass, there are three cosmological pa-

rameters involved in calculating the observed magnitude of a galaxy at a given redshift: a)

The bolometric distance modulus to account for the increasing distance; b) the k-correction that

describes the change in brightness due to the moving position of the filter with respect to the

galaxy’s rest-frame system; and c) the evolutionary correction, originating from the look-back

time, i.e. describing the fact that we see a distant galaxy in an earlier evolutionary state. While

distance modulus and k-correction are straightforward to include, the evolutionary correction,

however, can only be properly modelled using evolutionary synthesis models, and generally de-

pend on the adopted cosmology, the filter function and the galaxy type, i.e. its SF history.

3.4.1 Evolutionary and cosmological corrections

A comparison of evolutionary (e-) and cosmological (k-) corrections for three different spectra

types E, Sa, and Sd and for two different filters g and K is shown in Fig. 3.4. Both correction

factors can be derived from the spectra as follows:

ki(z) = −2.5 log

(∫ ∞
0 f (t0, z, λ)× FFi(λ)×ATT(z, λ) dλ∫ ∞

0 f (t0, 0, λ)× FFi(λ) dλ

)

ei(z) = −2.5 log

( ∫ ∞
0 f (tz, z, λ)× FFi(λ) dλ∫ ∞
0 f (t0, z, λ)× FFi(λ) dλ

)

where f (t, z, λ) is the flux of a galaxy of age t at redshift z and wavelength λ. FFi means the

relative sensitivity of the observing system, i.e. the combination of atmosphere, relative filter

http://www.galev.org
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Figure 3.4: Comparison of evolutionary (e-) and k-corrections for three different spectra galaxy types E (top panel),
Sa (middle panel), and Sd (lower panel), for two different filters SDSS g’ (left) and K (right); e-corrections are shown
with red lines, k-corrections in green and the sum, e+k, in blue. k-corrections also include the effects of intergalactic
attenuation. Note the widely different scales on each of the plots. Bumps in the curves are due to nebular line
emission. In the top panel we also show e+k corrections for two models with exponentially declining SFRs, but with
decline times of 0.5 (double dashed) and 2 Gyr (dot-dashed), i.e. half and twice the decline time of our standard E-model.

transmission function and detector efficiency. t0 = t(z = 0)− t(zform) is the age of the galaxy

today, tz = t(z)− t(zform) the age of the galaxy at redshift z and t(z) the age of the universe at

redshift z. ATT(z, λ) describes the intergalactic attenuation due to intervening neutral hydrogen.

A complete set of cosmological and evolutionary corrections for a wide range of filters can be

downloaded from our group webpage at http://www.galev.org.

For the g-filter the k-correction of the E-type model is rising nearly linear with redshift to reach

a plateau of kg ≈ 8 mag from z = 2.5 upwards. This tremendous k-correction comes from

the fact that local galaxies only emit very little flux at UV wavelengths, so that the blueshift

of the filter response relative to the rest-frame spectrum results in a decreasing observed flux.

Without any further corrections a typical L∗ E-type galaxy would have an apparent magnitude

of mg = 33 mag at redshift z = 2.5 and would hence be undetectable in even today’s deepest

surveys. The fact that indeed galaxies are observable to very high redshifts is due to the evo-

lutionary corrections. As shown e.g. in Fig. 3.1 and 3.3, ellipticals at high redshifts are not the

http://www.galev.org
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“old and passive” ellipticals observed locally, but rather violently star-forming, as much and

even more than today’s starburst galaxies, well comparable e.g. to the Antennae (NGC 4038/39).

Over the same redshift range z = 0 . . . 2.5 the evolutionary correction for the E-type model

reaches a maximum of −10 mag, making it brighter by a factor of 10 000 and as a consequence

easily observable in current deep fields. The slightly negative slope of the combined e+k cor-

rection counterbalances the rising distance modulus leading to an almost constant magnitude

over a wide redshift range. In the K-band the k-correction is much less pronounced, being

slightly negative until z ≈ 4 and rising slowly afterwards; the evolutionary correction again is

much stronger, rising almost linearly by −1 mag per unit redshift, so that the combined e+k

correction reaches (e + k)K ≈ −4 mag at z = 4 and beyond. If, as predicted by the hierarchical

scenario, galaxies were not yet fully assembled at high redshift, this will directly impact the

e-corrections. For a galaxy that only contained a fraction f of its mass at redshift z, the corre-

sponding e-corrections has to be reduced by 2.5 log( f ). This, however, is likely to counterbalance

the evolutionary corrections in only the most extreme cases.

For the Sa-type galaxy the g-band k-correction quickly rises to k ≈ 2 mag at z = 1 and stays

almost constant until the Lyman break reaches into the filter at z ≈ 3.0. Again this faintening is

completely reversed by evolutionary corrections of more than −4 mag at this redshift, resulting

in a negligible combined correction until z ≈ 0.8 and a maximum of −2 mag shortly before

the Lyman-break moves into the filter. In the K-band the behaviour is similar to that of the E-

type, with e-corrections rising roughly linearly by −0.5 mag per unit redshift. This effect is even

enhanced by a negative k-correction of −0.8 mag at z = 1, so that from z = 1 until the highest

redshifts the combined e+k correction is roughly −2 mag.

The Sd-galaxy has a completely different characteristic compared to the types described above.

In the g-band the e-correction is slightly negative with a maximum value of only 0.4 mag. The k-

correction has a maximum at z = 1, coincident with the local minimum short-wards of the 4000

Å-break moving through the filter, followed be a decline back to 0 at redshift z = 3 when the

Lyman-alpha emission line moves into the filter. In the K-band k-corrections reach a maximum

in the range z = 1 . . . 3.5, with much smaller values of only 0.2 mag at higher redshifts. e-

corrections are slightly positive, up to +0.4 mag, originating in a declining number of low-mass

stars, that did not have enough time to accumulate at these high redshifts. Note, however,

that independent of those e+k corrections the bolometric distance modulus combined with the

low luminosity of those galaxies prevents them from being detected in current deep surveys at

redshifts beyond z = 1− 2.
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3.4.2 Impact of sub-solar metallicity on SEDs

To study the impact of sub-solar metallicities on integrated magnitudes, we subtract SEDs of our

chemically consistent (CC) models from their counterparts with fixed to solar metallicity. The

results for the three types E, Sa, and Sd, and a range of redshifts are shown in Fig. 3.5. In this

figure negative values mean that the chemically consistent and generally sub-solar galaxy model

is brighter than the model computed using fixed to solar metallicity, but otherwise identical

parameters, in particular identical masses and star formation histories.

The outcome of this comparison is that our CC models are on average brighter in all filters by

about −0.3 mag or 30 %, compared to their solar metallicity counterparts. One exception is the

E-type model at redshifts z = 1− 2. In this range the youngest stars are indeed formed with

slightly super-solar metallicities, yielding a lower UV-flux and also weaker emission lines than

the solar metallicity model. For more details on the detailed chemical evolution of the different

spectral types we refer the reader to Bicker et al. (2004) and Chapter 5.

As mentioned earlier, lower metallicities result in higher overall luminosities (also see Bicker &

Fritze, 2005 and Chapter 5). If this is not taken into account and solar metallicity calibrations are

used instead, this leads to an overestimation of galaxy masses by the same factor, i.e. 30 % for

masses derived from NIR magnitudes as e.g. the K-band, but up to factors of 2 if masses for high-

redshift galaxies are derived from optical magnitudes alone. This does not yet take into account

the younger age of the stellar populations in high-redshift galaxies that have significantly lower

mass-to-light ratios than observed in galaxies in the local universe. This younger age and lower

mass-to-light ratio adds on to the mass overestimate from the neglect of metallicities.

3.4.3 Gas fractions vs. redshift

In our models we treat galaxies as closed-boxes, i.e. as closed entities that have a fixed total

mass that initially is completely gaseous and subsequently gets transformed from gas into stars

according to the chosen SFH. The upper panel in Fig. 3.6 shows how the gas-fraction, i.e. the

fraction of mass in gas relative to the total mass, evolves with redshift. All galaxies start forming

stars at redshift z = 8, so at this time the gas-fraction is one. With decreasing redshift the

stellar mass increases, leading to a decreasing gas-fraction. The slope of the curve depends

on the galaxy type: Early type galaxies such as our E-type model form stars very rapidly and

hence reach very low gas-fractions very early at high-redshift. Our spiral models have SFRs

proportional to the available gas mass with factors of proportionality decreasing towards later

types, i.e. from Sa to Sd (see Chapter 2 for details). Late type spirals therefore consume their gas

reservoir very slowly, leading to high gas-fractions over most of their lifetime.
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Figure 3.5: Magnitude differences between
the chemically consistent (CC) and solar
metallicity models for several filters from
U through K for different models of an
elliptical (top panel), Sa (central panel) and
Sd (lower panel) at four different redshift
z = 0.2, z = 1, z = 2, and z = 4. Positive
values mean the CC model is fainter, at
negative values the CC model is brighter
than the solar metallicity model.

This fraction of mass still present in gas has to be taken into account in any comparison between

photometric and dynamical masses. Dynamical masses contain all the matter in the galaxy, i.e.

stars, gas, and dark matter, while photometric masses only measure the light-producing stellar

content. Note that our models are calibrated (via the fraction of visible mass parameter, see

Chapter 2 for details) to match the mass-to-light ratios of local galaxies and hence include the

dark matter contained within the optical radius in their mass budgets. Since dynamical masses

are mostly derived from line-widths of emission and/or absorption lines they only trace the

dynamical mass within the optical radius and can consequently be directly compared without

the need for additional corrections.

In the lower part of Fig. 3.6, we show the mass correction factor as a function of redshift, i.e. by

which factor photometric and dynamical masses differ simply due to the presence of optically

invisible gas. Since this correction factor is very closely related to the gas-fraction, it also de-

pends on the galaxy type and redshift, ranging from values of a few to more than an order of

magnitude.
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Figure 3.6: Top panel: Fractions of mass
in gas relative to total mass for three
different models as a function of redshift.
Bottom panel: Photometric-to-dynamical
mass correction factor for the same models
shown in the top panel. The data points
are observed data from Erb et al. (2006b)
(small circles) and Daddi et al. (2008)
(triangle). In both panels we give the
corresponding galaxy age on the top axis.

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 8

12.8 5.1 2.6 1.5 0.9 0.5 0.3 0

fr
ac

tio
n 

of
 m

as
s 

in
 g

as

Redshift z

Galaxy age [Gyr]

E
Sa
Sd

1

10

100

0 1 2 3 4 5 6 8

12.8 5.1 2.6 1.5 0.9 0.5 0.3 0
m

as
s 

co
rr

ec
tio

n 
fa

ct
or

Redshift z

Galaxy age [Gyr]

E
Sa
Sd

For comparison we also show data from Erb et al. (2006b) and Daddi et al. (2008) who derived

dynamical masses from Hα line widths and gas masses from CO lines respectively. Stellar

masses in both cases were derived from fitting the observed SED models with galaxy models.

The results are in good agreement with our model predictions, with early-type spirals giving

the best overall fits.

3.5 Starburst and post-starburst templates

To reach bluer and redder colours than those reached by our undisturbed models we supplement

our grid with an extended set of models presented in Fritze et al. (2006). The full model-set now

includes 42 starburst models including their respective extremely red post-burst phases. The

starburst models start as a galaxy of spectral type Sb and encounter an burst at galaxy ages

from 0.1 to 13.0 Gyr in steps of typically 0.5 Gyrs, but increasingly smaller steps for the earlier

bursts. A burst is characterised by an gaussian-shaped increase of SFR on a timescale of 125 Myr,

followed by an exponential decline with an e-folding time 250 Myr. The burst time corresponds

to the time of maximum SFR. We assume the SFR after the burst to asymptotically drop to

zero, i.e. the SF is truncated as a consequence of the burst. This is physically motivated either



88 Chap. 3: Galaxies to the redshift desert - Model set

by feedback processes directly related to the SF activity during the burst, i.e. by supernovae

expelling the gas in form of galactic winds (e.g. Strickland et al., 2004; Westmoquette et al., 2008)

or heating it to high temperatures (e.g. Kay et al., 2002), or more indirect means such as AGN

feedback (e.g. Silk & Rees, 1998; Schawinski et al., 2007; Reuland et al., 2007). We relax this

assumption in Sect. 3.5.8 where we also investigate several models with incomplete truncation,

i.e. a burst remnant with some ongoing, low-level SF.

Strong starburst are likely to be triggered by external encounters like mergers, so that the as-

sumption of a closed-box models underlying our chemically consistent models would not hold

in these cases. We therefore fix the metallicity of the input physics that goes into all burst models,

in particular stellar evolution and stellar spectra, to half the solar value (also see Sect. 3.5.2). The

choice of half-solar metallicity was motivated by several studies of galaxies in both the nearby

and high-redshift universe finding that this value is a good approximation for a wide range of

galaxies except the few most massive ones (e.g. Erb et al., 2006a; Hidalgo-Gámez & Ramírez-

Fuentes, 2009; Hayashi et al., 2009; Pérez-Montero et al., 2009; Reddy et al., 2010). This holds

in particular as most of the abundances we measure in actively star-forming galaxies refer to

gaseous (oxygen-) metallicities and these are only an upper-limit to the metallicity of the under-

lying, older stellar population. Furthermore, Bresolin et al. (2009) found that the general method

of using strong emission lines to determine oxygen-abundances over-estimates the true abun-

dance as derived from the Te f f -method by as much as 0.3 dex, shifting many of the previous

results to even lower metallicities.

Additional support for our assumption is presented in, e.g., Rupke et al. (2010): mergers, as the

likely origin of starbursts, effectively stir up the comparably low-metallicity gas in the outskirts

of the progenitor galaxies, that is then used up to fuel the starburst, leading to sub-solar abun-

dances of the newly formed stellar generation. A closer look at possible merger progenitors also

confirms our assumption: galaxies with high-metallicity gas near the solar value such as early-

type spirals are generally gas-poor and hence cannot fuel massive starbursts. Galaxies that still

contain a large enough gas supply, on the other hand, are less metal-enriched and hence agree

with our assumption of fixing the metallicity to half-solar.

3.5.1 Star formation rates

In Fig. 3.7 we show the evolution of SFR for a small selection of our burst models with varying

peak-SFR times at galaxy ages of 0.5, 2.0 and 7.0 Gyr. The star formation rate during the burst

depends on the remaining gas-mass at that onset time of the burst and is chosen in such a way

that during the burst 75 per cent of the available gas is transformed into stars (e.g. Mihos &

Hernquist, 1996). For this reason bursts occuring at younger galaxy ages have higher initial
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Figure 3.7: Star formation rates as a func-
tion of redshift for three different burst
models with SFRs reaching their peak at
galaxy ages varying between 0.5 Gyr and
7.0 Gyr . In all cases the progenitor is of
Sb-type (shown for comparison as black
solid line) and all galaxies have total (stars
+ gas) masses of 1010 M�. The solid red
line shows the SFR of our E-type model,
also normalized to the same total mass.
The top axis gives the corresponding
galaxy age.
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SFRs than later bursts, since the reservoir of gas within the progenitor galaxy gets constantly

consumed by the quiescent SF activity.

For a total galaxy mass, i.e. the sum of stellar and gaseous masses, of 1010 M� typical SFRs

during the burst have values of a few to a few tens of solar masses per year. However, there are

two main factors influencing these values, namely the galaxy mass and the decline time. In our

description of the burst strength the peak SFR during the burst, ψ(tB) is given by

ψ(t = tB) = bs× fGas ×Mtotal
τB

(3.1)

where bs is the burst strength, fGas the fraction of mass available as gas, Mtotal the total galaxy

mass and τB the decline time of the burst. Massive star bursts with SFRs of hundreds of M� yr−1

as found in e.g. Ultra-Luminous InfraRed Galaxies (ULIRGs) or Sub-mm galaxies (Chapman

et al., 2004; Greve et al., 2005; Schinnerer et al., 2008) hence can be explained by bursts in massive

galaxies undergoing bursts with short decline times. Short decline times arise naturally from the

compactness of the star formation regions, as found in both simulations (Mihos & Hernquist,

1996) and observations (e.g. Greve et al., 2005).

As consequence of the quiescent SF in the yet undisturbed galaxy the gas-to-total mass fraction

fB is constantly decreasing with time. This leads to slight variations in stellar mass as z = 0,

with models encountering later bursts having higher masses.

In Fig. 3.8 we show the redshift evolution of specific SFRs (sSFRs), defined by

sSFR(t) =
SFR(t)

Mstars(t)
(3.2)

for a range of models. sSFRs are a valuable tool because they are independent of the galaxy’s

stellar mass, as both the SFR and stellar mass scale with the total mass of our models. At very
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Figure 3.8: Specific star formation rates
(sSFRs, = SFRM−1

stellar) for a range of
undisturbed models (thick lines) and
starburst models (thinner lines). Starburst
models are only shown for ages after the
onset of the burst. The top axis gives the
corresponding galaxy age.

high redshift (z & 7) sSFRs reach extreme values because the still extremely young galaxies

did not yet assemble a significant stellar mass (note that we assume a formation redshift of

zform = 8). With increasing age the sSFR decreases due to the decrease in SFR combined with

the increase in stellar mass. During the bursts, and for early bursts in particular, sSFRs can reach

values of 10−9 − 10−8 yr−1, which is comparable to galaxies at their peak of star formation. In

the aftermath of the bursts sSFRs decline very quickly due to the assumed truncation of SF as

consequence of the burst.

Daddi et al. (2007) used deep UV through Mid-IR data to derive sSFR for a large sample of

galaxies out to redshift z = 2 and found a decrease in sSFR from z = 2 to z = 1 by a factor 3.7

and by a factor of 27 to z = 0, very similar to more recent findings by Pannella et al. (2009). These

values are in excellent agreement with results from our model grid which, in the case of an Sa

model, predicts a decrease by 2.8 and 26 for the respective redshift ranges. Later galaxy types

show a more shallow decrease with redshift, but are too faint at high-redshifts to significantly

contribute to the overall sample and hence have little impact on the results.

3.5.2 Chemical enrichment

The top panel of Fig. 3.9 shows the evolution of the ISM abundances for a part of our model grid

as a function of redshift. All galaxies start as undisturbed Sb-type galaxies (shown as black solid

line). During the burst the metallicity in the gas-phase rises very rapidly due to the metal-rich

ejecta of Type-II supernovae mixed into the ISM. In the late phases of the burst ≈ 1 Gyr after

the burst started the metallicity remains roughly constant and reaches roughly solar enrichment

levels [Fe/H] ' 0. However, a significant fraction of the stars are formed shortly after the burst

started and hence will have sub-solar metallicities, confirming our assumptions to use half-solar
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Figure 3.9: Top panel: Chemical enrich-
ment histories for a range of burst models
as function of burst time. All bursts start as
undisturbed Sb-type model and encounter
burst with a burst-strength of 0.75, i.e.
75% of their available gas-mass at the
onset time of the burst gets converted into
stars. Bottom panel: Similar to above, but
for varying burst-strengths for one early
(burst at galaxy age of 0.5 Gyr) and one
late burst (6.5 Gyr). The black solid lines
in both plots marks the evolution of the
Sb-type progenitor. The top axis gives the
corresponding galaxy age.
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metallicity spectra for the spectral modelling.

In the lower panel of Fig. 3.9 we present the chemical evolution for two selected models with one

early (at a galaxy age of 0.5 Gyr) and one late (galaxy age of 6.5 Gyr) burst, but varying burst

strengths from 10 to 100 per cent. Weak bursts followed by SF truncation result in relatively

metal-poor galaxies with metallicities of 10− 30% of solar. Strong bursts with bs ≥ 0.5 on the

other hand produce the near-solar metallicities typical for local early-type galaxies. Furthermore

late bursts reach generally higher levels of enrichment despite the fact that they produce a

smaller amount of stars during the burst. The reason for this is again the slow quiescent SF in

the undisturbed host galaxy that very effectively enriches the host galaxy’s ISM.

3.5.3 Spectral evolution of starburst models

In Fig. 3.10 we show the spectrum of a model with a burst starting at a galaxy age of tB = 4.0

Gyr at 5 different times from the onset of the burst to a late post-starburst phase 2 Gyr after

burst onset. At the very beginning of the burst the SFR reaches its maximum, leading to a very
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Figure 3.10: Spectra of a starburst galaxy,
starting as a Sb-type model and encoun-
tering a strong (burst strength 75%) burst
after 4 Gyr. Ages range from directly at
the peak of the burst to late post-starburst
phases.

blue continuum from the Lyman break all the way through NIR. At this time the emission line

strength, a measure for the SF activity during the last few Myr, reaches its maximum. The UV

luminosity, however, continues to increase with time due to the accumulation of longer-lived

(≈ 100 Myr) and UV-bright intermediate mass stars. 0.5 Gyr after the peak of the burst the

luminosity short-wards of the 4000 Å break starts to decrease significantly, while the ongoing

built-up of stellar mass leads to a maximum brightness in the optical and NIR. 1 Gyr into the

burst the strength of the Balmer (absorption) lines reach their maximum strength, leading to

the so-called E+A phenomenon (e.g. Zabludoff et al., 1996; Dressler et al., 1999; Tran et al., 2003;

Goto, 2007; Yamauchi et al., 2008; Falkenberg et al., 2009a,b). At later times the spectral evolution

is dominated by the passive aging of the stellar populations, gradually turning the spectrum into

an early-type galaxy spectrum.

In Fig. 3.11 we compare the spectra of burst models with bursts starting at different galaxy ages.

All spectra show the galaxy spectrum directly at the peak of the burst, i.e. in the moment of

maximum SFR; this moment does not necessarily need to be the moment of maximum lumi-

nosity (see above). For the bursts occuring at very young ages (0.5 and 1.0 Gyr) the spectra are

completely dominated by the young population, there are no significant contributions from an

older population yet. For the two intermediate cases with onset times of 2.5 and 5.0 Gyr the

galaxy has had enough time to accumulate low mass stars, leading to a increased luminosity in

the optical-NIR. For those two and in particular the model with a late burst after 10 Gyrs, the

galaxies do not become as UV-bright as in the case of early bursts. This is due to our defini-

tion of the burst strength, which measures the amount of stars formed relative to the available

gas reservoir before the burst. Since the underlying host galaxy continuously forms stars, the

available gas-mass (see Fig. 3.6) and with it the peak SFR (see Fig. 3.7) decreases with increasing

burst onset times. For the latest burst the optical-NIR region does not reach the luminosities of

the earlier bursts, since for this model the dominating SF episode early in the life of the galaxy
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Figure 3.11: Comparison of spectra of
burst models at the moment of maximum
SFR for different onset times from 0.5 to 10
Gyr.
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Figure 3.12: Comparison of spectra of
burst models with identical onset times
of 5 Gyr, but different burst strengths bs
between 0.1 and 1.0.
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has faded due to stellar evolution.

Fig. 3.12 compares spectral shapes shortly (20 Myr) after the peak of burst for a wide range in

burst strengths from bs = 0.1 to bs = 1.0. Weak bursts bs = 0.1 mainly increase the UV part of the

spectrum with their relative higher star formation rate. The optical and NIR, however, remains

essentially unchanged. With increasing burst strengths bs & 0.25 the young burst stars also

significantly increase the flux in the longer passbands. The overall spectrum for those cases is hence

determined by the burst, although the mass fraction of young stars formed during the burst relative to the

underlying, older population is still very small (≈ 2% in the case of bs = 0.25). For even stronger

bursts the integrated galaxy spectrum is completely dominated by the young population despite

their low mass fraction compared to the underlying host, so that the spectrum, compared to the

case of weaker bursts, only changes in luminosity, but not in shape.

This can lead to significant uncertainties in the derived stellar masses. Fitting a very young
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Figure 3.13: Spectra for bursts occuring at different galaxy ages for different redshifts z = 0, 1, 2, and 4. The number of
spectra shown decreases with increasing redshift, because at higher redshift some galaxies are not old enough, so they
did not yet encounter the burst. All spectra are normalized by their flux at 0.55 micron.

population with its low mass-to-light ratio underestimates the stellar mass by a factor of a few.

3.5.4 Comparison of post-starburst to elliptical galaxies

In Fig. 3.13 we compare spectra of (post-)burst galaxies to that of our E-type model. The main

difference is that the E-type galaxy is formed in a monolithic collapse, with a purely expo-

nentially declining SFR and e-folding timescale of 1 Gyr. Post-starbursts, however, formed a

significant fraction of their stars in an exponentially declining burst at later times (depending on

burst model), but with an e-folding time of only 250 Myr.

As can be seen from the top-left panel of this figure there is very little difference between all the

burst-models. While this is not surprising for the early bursts that are dominated by a very old

population just as the E-type model, not even our latest burst after tB = 10.0 Gyr, i.e. only 2.8

Gyr ago in our adopted cosmology, can be differentiated from the E-type model. This agrees

with studies of local merger remnants, which not only have spectra and accordingly colours like

old ellipticals, but also r1/4 light profiles typical for bulges and ellipticals (e.g. Schweizer, 1982b,

1996; Wright et al., 1990; Hibbard & Yun, 1999; Rothberg & Joseph, 2004).

The most effective way to discriminate between the two formation paths is to use independent

tracers of star formation such as globular clusters (GCs). Deriving ages and metallicities for a
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representative sample of GCs then allows to reconstruct individual bursts of SF that otherwise

can not be disentangled from integrated light studies alone (Ashman & Zepf, 1992; West et al.,

2004; Fritze, 2004; Brodie & Strader, 2006). However, this approach requires to break the age-

metallicity degeneracy and hence was only successfully applied to a small sample of nearby

galaxies (Puzia et al., 2002; Kissler-Patig et al., 2002; Hempel et al., 2003, 2007; Larsen et al., 2005;

Appendix A).

3.5.5 Colour evolution of burst models

The colour evolution of those models is shown in Fig. 3.14. For reasons of clarity we did

not include all models, with more intermediate models skipped at lower redshift. Note that

although our model grid spans similar steps for the time of the onset of the burst, the steps

in redshift space get increasingly smaller towards lower redshifts; due to cosmic time dilation

a fixed redshift interval at low redshift corresponds to a larger time-span than an equal sized

redshift interval at high redshift.

From the very beginning of the burst, the galaxy becomes very blue due to the high SFR. After

≈ 0.5 Gyr or two e-folding times the colour returns to the value before the burst. During this

first phase until ≈ 1 Gyr after the burst the galaxy becomes brighter by 1.5− 4 mag, depending

on filter and galaxy age at the onset of the burst (i.e. the amount of gas converted into stars).

This relatively short blue and bright phase is followed by a longer phase of ≈ 2.5 Gyr where

the galaxy becomes increasingly red and very faint in the rest-frame UV and, to a lesser degree,

optical, before it finally settles down on the red post-starburst sequence described below (see

also Fritze & Gerhard, 1994a). From that moment on the decreasing absolute magnitude due

to passive aging of the galaxy’s stellar population is compensated by the decreasing distance

modulus.

Not all bursts have the same effect on the colour evolution. At very high redshift the galaxy

hardly becomes bluer during the violent early burst phases, since its young stellar population

is very blue anyway. The maximum blueing during a burst happens in bursts at intermediate

redshift. At high redshifts galaxy colours are red due to redshift and not due to the age of their

stellar populations, which intrinsically are very blue. At lower redshifts the available gas-mass

has decreased considerably, and with it the maximum amount of new stars that can form during

the burst.

The phase of maximum redness in the aftermath of a burst also occurs at intermediate redshifts

around z ≈ 2; the maximum colour reached gets redder with bursts happening earlier in the

lifetime of the galaxy. In general, galaxies reach their extremely red phases ≈ 1.5− 3 Gyr after

the peak of the burst. At that time their spectra are dominated by a large number of A-type stars,



96 Chap. 3: Galaxies to the redshift desert - Model set

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5  6

V
60

6 
- 

K
s 

[m
ag

]

Redshift

E
Sa
Sd

tB=0.5
tB=1.0
tB=1.5

tB=2.0
tB=3.0
tB=4.5

tB=6.0
tB=8.0

tB=10.0

Figure 3.14: V-K colour evolution of a
subset of models (for reasons of clarity)
used to derive the photometric redshifts.
Undisturbed models are shown with thick,
solid lines, and burst models with dashed
lines. Black points are galaxies from the
catalog of Fernández-Soto et al. (1999).
All magnitudes are given in the AB-system.

while the majority of their bolometric luminosity is emitted by intermediate mass (M ≈ 3 M�)

stars in their extremely bright but cool and hence very red TP-AGB phase.

The redshift range covered by the very red phases depends on the starting time of the burst.

Very early bursts (tB = 0.5 Gyr) lead to extremely red phases with (V − KAB > 2 over the large

redshift interval z = 2.4− 1. Later bursts reach this phase for only a very short interval (e.g.

z = 1− 1.4 for tB = 2 Gyr) or not at all (if tB > 3 Gyr). Note that independent of the time of the

burst the extremely red phase with V − K > 4 ends at z ≈ 1. Hence (V − K)AB > 4 can be taken

as a colour criterion to preselect galaxies at z ≥ 1.

A detailed analysis of this finding and a comparison with observations is the topic of Chapter 4.

3.5.6 Universal red post-starburst sequence

At z < 1 all early burst models join the colour evolution of the undisturbed E-type galaxy, later

bursts reach this colour sequence roughly 1.5 Gyr after the onset of their respective bursts. This

is not only valid in the case of the V − K colour. In Fig. 3.15 we demonstrate the evolution of all

burst models in the B−V and V − K colour magnitude planes.

All galaxies start forming stars as a Sb-type galaxy at redshift z = 8 and encounter a strong

(bs = 0.75) burst after 0.5− 10 Gyr in steps of 0.5 Gyr. At the time of the onset of the burst they

get both brighter and bluer, moving to the left and top in both panels of Fig. 3.15. In the B-V case

they then become fainter and red, making a turn back to the lower right, crossing the position of

the undisturbed Sd-type model ≈ 0.5 Gyr after the beginning of the burst. Once reaching reddest
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Figure 3.15: B-V (upper panel) and V-K (lower panel) colour evolution of all galaxy models in our model grid. The thick
solid line gives the colour of the Sb-type progenitors for comparison. All magnitudes are given in the AB system. Red
lines show early bursts with tB = (0.5, 1.0, 1.5) Gyr, blue are bursts at intermediate ages (tB = (2.0, 3.0, 4.5)) and shown
in grey are late bursts with tB = (6.0, 9.0, 11.0) Gyr.

colours at the very right they join the envelope that we call the “red post-starburst sequence”. In

the V − K plane galaxies also become brighter and bluer, but they do not become fainter in their

transition phase to the red post-starburst sequence. Finally they also join into an enveloping

post-starburst sequence.

3.5.7 Evolutionary corrections for burst galaxies

Fig. 3.16 shows evolutionary corrections for a subset of our burst grid in three different filters

u, i, and K (top, middle and bottom panel, respectively). It is obvious that, although the overall

shape is similar for the different models and to a lesser degree even among the filters, there are

significant differences between them. For both optical filters u and i the corrections reach peak

values of ≈ −10 . . .− 13 mag (corresponding to a factor ×105 in luminosities), making it possible

to observe those galaxies out to the highest redshifts. These phases of maximum brightness are

followed by a relative fast decline towards lower redshifts owing to the decline of SF combined

with stellar evolution.

Note that all burst models have k-corrections very similar to that of the undisturbed E-type

galaxy because the spectra of all post-starburst models at redshift z = 0 are very similar to the

spectrum of an undisturbed E-type model (see top left panel in Fig. 3.13). This means that the

evolutionary corrections of our burst models shown in Fig. 3.16 can be directly compared with

the e-corrections of the E-type model.
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Figure 3.16: Evolutionary corrections
for several selected burst models with
different burst onset times for three filters
U (top panel), I (middle panel) and K
(bottom panel). For comparison we also
show the evolutionary corrections for an
E-type model with exponentially declining
star formation rate.

3.5.8 Models with bursts and remaining SF after the burst

One scenario that is predicted by structure formation simulations but was not yet covered is

the case where a post-starburst accretes gas and restarts star formation. To study this case

we modelled galaxies with exponentially declining bursts as described before, but with a SFR

proportional to the available gas-mass. For simplicity, the constant of proportionality was chosen

to be identical with the one of the progenitor before the burst. The choice of a different value

does not significantly affect our results.

In the top panel of Fig. 3.17 we show the colour evolution in R − K for several models with

fixed peak time of tB = 2.0 Gyr for which we varied the progenitor type from Sa to Sd. As

expected, we find only small variations with progenitor type since all galaxies are still gas-

rich and actively star-forming at this early stage. The comparison with a reference model with

complete truncation of SF during the post-starburst phase and identical time of burst shows

that the originally found very red colours are no longer reached as a consequence of the small
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Figure 3.17: R − K colour evolution of
models with bursts and remaining SF dur-
ing the post-starburst phase for different
progenitor types Sa to Sd (top panel) and
different times of burst onset tB = 0.6− 8.0
Gyrs (bottom panel). The red solid line
shows a model with Sb-type progenitor,
a burst at a galaxy age of 2 Gyr and
complete shutdown of SF after the burst as
a reference with previous plots. The thick
green line shows the colour evolution of
our undisturbed Sa-type model.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R
-K

 c
ol

ou
r 

[m
ag

]

Redshift z

Ref. Sb+Burst
Undist. Sa

Sa
Sb
Sc
Sd

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R
-K

 c
ol

ou
r 

[m
ag

]

Redshift z

Ref. Sb+Burst
Undist. Sa
tB=0.6 Gyr
tB=1.0 Gyr
tB=2.0 Gyr
tB=4.0 Gyr
tB=8.0 Gyr

fraction of young stars.

The comparison of different burst times tB = 0.6− 8.0 Gyr for a fixed progenitor type (Sb) is

shown in the bottom panel of Fig. 3.17. In the post-starburst phase starting ≈ 0.5 Gyr after the

peak of the burst, all models have indistinguishable colours due to their similar recent SFHs. At

low redshifts z . 0.5, these colours coincide with the colours of an undisturbed Sa-type model.

In a more general case for arbitrary progenitor types we find that a burst with subsequently

remaining low-level SF yields a remnant galaxy that is approximately one spectral type earlier

than the progenitor, e.g. transforming an Sd progenitor into an Sc remnant.

3.6 Summary and outlook

Evolutionary synthesis models are an established tool to study both physical properties and

spectra of galaxies over cosmological times from the big bang until the present. We used our

chemically consistent galev code to create a large grid of models for both undisturbed galaxies

as well as galaxies undergoing a starburst event at some stage of their evolution. For each of

these models we trace stellar and gaseous masses, star formation rates, metallicities and spectra

as a function of age and redshift.
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We find that all galaxies from early-type ellipticals to late-type spirals have very similar spectra

in the early universe, despite their significantly different spectra in the local universe. The

reason for their look-alike spectra are high specific star formation rates, naturally explaining

why searches for “red and dead” ellipticals are unsuccessful at redshifts beyond z = 3.

For each model we also compute cosmological and evolutionary corrections. These corrections

enable a comparison of galaxies at different redshifts. Accurate evolutionary corrections are of

paramount importance for all studies of high-redshift galaxies since they heavily impact on both

observed magnitudes and colours and hence are able to completely alter their spectra and SEDs.

We also compare models that account for increasing abundances of successive stellar populations

to models assuming a fixed, solar metallicity for all stars. Galaxies with subsolar metallicities

can be brighter than their solar-metallicity counterparts by up to & 1mag depending on galaxy

type, filter, and redshift. Neglecting this metallicity evolution of galaxies can have a profound

impact on both masses and star formation rates derived for high-redshift galaxies.

However, even including both e- and k-corrections does not allow us to describe all observed

properties with our model grid. For this reason we added a number of galaxies encountering

strong starbursts. During these starbursts models reach the observed very blue galaxy colours,

while becoming extremely red in their late post-starburst phases. This extended model grid can

cope with the extremely wide range of star formation rates found among high-redshift galaxies

from Lyman Break Galaxies all through sub-millimetre galaxies. A detailed comparison is given

in Chapter 4.

We furthermore find that even small mass contributions from young stars of the order of a few

per cent can outshine a massive underlying host galaxy, leading to significantly underestimated

ages and stellar masses. In their late phases, all post-starburst models have similar colours

that only depend on redshift and hence form a narrow red post-starburst sequence, similar to

the well-known colour-magnitude relation. All post-starburst models and even models with

relatively recent bursts less than 3 Gyrs ago reach metallicities at z = 0 near the solar value and

also have spectra very similar to those of local elliptical galaxies. In case star formation is not

completely halted after the burst, but continues at an rate proportional to the remaining gaseous

masses, the remnant is one spectral type earlier than the burst progenitor.

All models presented here (spectra, SEDs, e- and k-corrections for a wide range of filters, star for-

mation rates, stellar and gaseous masses, and metallicities) are freely available at www.galev.org.

Models with different parameters can also be created using the same URL. For more details see

Chapter 2.

In Chapter 4 we use the models presented here and compare them to the observed proper-

ties of galaxy population selected by relatively simple colour criteria, showing that our models

http://www.galev.org
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can reproduce all these criteria. Our models furthermore are in excellent agreement with typ-

ical masses, star formation rates and metallicities derived from optical and near-infrared spec-

troscopy, further emphasising the value of this grid for a wide range of studies of galaxies from

nearby to the redshift desert and beyond to the highest redshifts.

Based on these encouraging results we will in a next step combine the results from our modeling

described in this chapter with our new photometric redshift code GAZELLE and then apply this

combination to a large sample of galaxies from a number of deep fields (Chapter 6). This will

give us not only accurate redshifts, but also physical parameters for a large number of galaxies

over a range of redshifts and hence grant us a deeper insight into galaxy formation and evolution.
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Chapter4
Galaxies to the redshift desert and beyond

II. Comparing models with observations

Abstract:

In Chapter 3 we presented evolutionary synthesis models for undisturbed E and Sa-Sd type
galaxies as well as a wide range of starbursts and post-starburst models. For each model we
trace star formation rates, stellar and gaseous masses, metallicities and the evolution of spectra
and magnitudes for a wide range of filters, from the formation in the early universe until today.
We furthermore include both evolutionary and cosmological corrections.

Here we show that this model grid is able to describe currently used colour selection criteria
for Lyman Break Galaxies (LBGs), BzK galaxies, Extremely Red Objects (ERO) and both Distant
and Luminous Red Galaxies (DRG, LRG) not only in terms of colours, but also with respect to
stellar masses, gas fractions, star formation rates and metallicities. Our main findings are: a)
We not only confirm the original LBG/BM/BX colour selections, but based on masses, SFRs and
metallicities identify LBGs as the most likely progenitors of local early type spiral galaxies and
low-mass ellipticals. b) Our model grid correctly confirms the BzK colour selection, but also
points out a class of post-starburst galaxies that are missed by this colour selection. We correctly
explain the observed range of masses, SFRs and metallicities. c) By including post-starburst
phases we are for the first time able to reproduce E+A features in EROs as alternative to dusty
star-forming galaxies. These post-starburst galaxies explain the observed number densities and
masses and offer the potential to study the merger rate at high redshifts. d) DRGs can be either
explained by post-starbursts or galaxies with moderate amounts of dust. Our grid explains both
their high masses and SFRs, identifying them as progenitors of local ellipticals. e) LRGs are also
excellently described as very massive post-starbursts with high metallicities and are the younger
counterparts of the most massive ellipticals found in the local universe.

We conclude that our model grid explains many findings derived by spectroscopy in a unified
and physically sound way. It therefore present an ideal template set to be used with photometric
redshift codes and offers a unique insight into physical properties across galaxy types and over
a wide range of redshifts .
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4.1 Introduction

High-redshift galaxies have been classified into a number of different types: Lyman Break Galax-

ies (LBGs Guhathakurta et al., 1990) and Steidel & Hamilton (1992, 1993); Steidel et al. (2003),

BzK Galaxies (Daddi et al., 2004), Extremely Red Objects (EROs Elston et al., 1988, 1989), Distant

Red Galaxies (DRGs Franx et al., 2003; van Dokkum et al., 2003) and Luminous Red Galaxies

(LRGs Eisenstein et al., 2001; Cannon et al., 2006) to just give their most common names. Many

classifications contain some overlap in the sense that galaxies can be classified as more than

one type simultaneously. The main advantage of colour selection is the need for only one or

two colours. This technique therefore allows to very efficiently (pre)select high redshift galaxies

for spectroscopy with a minimum amount of telescope time (e.g. Steidel et al., 2003; Willmer

et al., 2006). However, they only allow a rough redshift determination within wide ranges or

only give lower limits, making them in principle inferior to more advanced techniques such as

photometric redshift estimates.

So far these different classes of high-redshift galaxies have been investigated using different

approaches, not only in terms of observational techniques and wavelength ranges, but also in

terms of models used in the analysis of their physical properties like present star formation

rates (SFRs) and past star formation (SF) histories, total gaseous and stellar masses, metallicities,

gas contents, etc. The use of different methods to study the individual classes of high-redshift

galaxies makes it very difficult to establish evolutionary links among galaxies from different

classes.

We here, for the first time, present an approach to consistently study this full range of high-

redshift galaxies with one set of galev evolutionary synthesis models. This approach offers a

much better avenue to investigate the existence of evolutionary links between galaxies of various

subtypes and at a range of redshifts. So far, our models are restricted in the sense that they

do not yet include a consistent description of dust in absorption and emission. This precludes

the interpretation of clearly dust-dominated spectra and galaxy types. We can, however, explain

the properties of a considerable fraction of even the reddest galaxies without significant dust

contributions.

In the following we compare the model grid presented in Chapter 3 to empirically derived colour

selection criteria for a variety of high-redshift galaxies, ranging from blue Lyman Break Galaxies

and their various subclasses, over BzK-galaxies to Extremely Red Objects, Distant Red Galaxies

and finally Luminous Red Galaxies. We pay particular attention to the comparison of physical

properties such as masses, star formation rates and metallicities. We conclude this chapter with

a summary and an outlook.
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4.1.1 Words of caution

We stress that the galaxy types we attribute to high redshift galaxies are those that correspond

to the SFH of these galaxies prior to the time of observation. Only if galaxies evolve without

further disturbance in their SFHs will these still be the galaxy types observed today. Merging

and accretion events after the time of observation may change the galaxy type until redshift

zero, but only if they involve gas and hence affect the SFH. If those events are violent enough to

enhance SF or trigger a burst, the present-day galaxy type will be earlier than the one identified

at high redshift. Only in the case of very steady and low-rate accretion of gas may an early-type

galaxy at high redshift rebuild a gaseous and later, possibly, a stellar disk and thus evolve into a

later-type galaxy. Galaxy masses can only increase beyond those already present at high redshift.

The relatively small mass range of present-day spirals limits the number of spiral galaxies that

can result from such a secondary disk-building scenario out of early-type galaxies that are bright

enough at high redshift to make it into the photometric sample. For more details, in particular

on how these scenarios can be treated with galev models see Sect. 3.2.2 and Sect. 3.5.8.

For a similar reason we do not treat stellar mass as a free parameter for our undisturbed models

in the analysis presented below. Our models are calibrated to closely match the observed prop-

erties of nearby galaxies of each particular spectral type. The spectral type of a galaxy, in turn, is

closely coupled to its overall (stellar) mass in the sense that more massive galaxies have generally

earlier spectral types. If, as we assume, this holds back to the early universe, any alteration of

the stellar mass of a galaxy at high redshift would result in a different prediction for the galaxy

type we expect for its z = 0 descendant.

4.2 Lyman Break Galaxies

One of the earliest efficient means to detect high-redshift galaxies in large numbers was the

Lyman break technique introduced by Guhathakurta et al. (1990) and Steidel & Hamilton (1992,

1993). It is based on the fact that intergalactic neutral hydrogen clouds are very efficient in

absorbing radiation at wavelengths shorter than the Lyman-α line, causing a sharp break in the

spectrum. This causes the galaxy to have unusual colours that are very red in the blue and very

blue in the red spectral region, if the Lyman break happens to lie between the two. We refer the

reader to the review by Giavalisco (2002) for more details on LBGs.
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4.2.1 Colour selection criteria

Steidel & Hamilton (1992) and Steidel et al. (2003) define four groups of LBG, according to two

colour selection criteria in their special-purpose filter system. Both C and D-type LBGs fulfil the

selection criteria

G−R ≤ 1.2

Un − G ≥ G−R + 1.5 (4.1)

The difference between both classes is that C-type LBGs are those still detected in Un, while

D-type LBGs are not. M and MD-type LBGs are selected by a slightly relaxed colour selection:

G−R ≤ 1.2

Un − G ≥ G−R + 1.0

Un − G ≤ G−R + 1.5 (4.2)

Again M-type LBGs are those detected in Un, while galaxies of the MD-type are not.

Using the same filter set, Erb et al. (2003), Steidel et al. (2004), and Adelberger et al. (2004)

introduced further selection criteria targeting galaxies in the redshift desert at slightly lower

redshifts. Their BM galaxies at redshifts 1.5 . z . 2.0 fulfil the criteria

G−R ≥ −0.2

Un − G ≥ G−R − 0.1

G−R ≤ 0.2(Un − G) + 0.4

Un − G ≤ G−R + 0.2 (4.3)

while their BX galaxies with redshifts 2.0 . z . 2.5 are selected by:

G−R ≥ −0.2

Un − G ≥ G−R + 0.2

G−R ≤ 0.2(Un − G) + 0.4

Un − G ≤ G−R + 1.0 (4.4)

In Fig. 4.1 we present a part of our model grid in the (Un − G)–(G−R) colour plane. We only

show three undisturbed galaxy types representing E, Sa, and Sd, plus those burst models with

bursts before z = 3, since all other models are still undisturbed before this redshift. The regions
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Figure 4.1: Evolution of several representative galaxies from our model grid in the Un − G,G−R colour-colour plane.
The colour selection regions as given in Steidel et al. (2003) are shown in green (C and D-type LBGs) and orange (M and
MD-type).

selecting C/D and M/MD galaxies are shown as shaded green and orange regions, respectively.

The regions selecting the lower redshift BX and BM galaxies are also shown in grey (BX) and

darker green (BM).

As can be seen from this figure, all our models fulfil the colour criteria identifying them as LBGs

in the respective selected redshift range. Only one model with a very early burst starting at an

age of 0.5 Gyr has colours near the edge of the selection region and does not fulfil the BX and

BM criteria. The reason for this is that we assume a rapid exponential decline of star formation

after the burst, reducing the strength of the UV continuum, which in turn leads to redder G−R

colours.

4.2.2 Properties of LBGs

Shapley et al. (2001) studied rest-frame optical spectra of a large sample of LBGs and found a

wide range in the observed stellar masses, ages and derived SFRs. Splitting their sample into

“young” (age < 35 Myr) and “old” (age > 1 Gyr) LBGs, they found mean values of (210 M� yr−1,
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2.9× 109M�) and (25 M� yr−1, 4× 1010M�) respectively for their SFRs and masses, or equiva-

lently specific SFRs, i.e. the SFR per unit stellar mass, of 7× 10−8 yr−1 and 6.3× 10−10 yr−1. Both

types of LBGs can be explained by our models.

The “young” population is well matched by our starburst models in an early phase of the burst.

During this phase the young populations - despite their comparably low mass fraction relative to

the older ones - completely outshine the underlying older population (see Fig. 3.12), explaining

the young ages. High star formation rates and the resulting amounts of dust naturally explain

the higher extinction values found in this young LBG population as compared to the older one.

The old LBG population is well described by our undisturbed galaxy models. However, in

order to reach the observed absolute SFRs (tens of M� yr−1) we require total, i.e. stellar +

gaseous, masses of the order of 1011 M�, typical for present-day elliptical and early-type spiral

galaxies. For those types our models predict metallicities (see Fig. 5.1 and Fig. 3.9) of 0.5 Z�
(Elliptical), 0.2 Z� (Sa) and 0.1 Z� (Sb), encompassing the full range of spectroscopic metallicities

(0.1− 0.5)× Z� as observed for LBGs by Pettini et al. (2001).

In return, if this old LBG population observed at redshifts z = 1.5− 2.5 is to evolve into the local

population of Sa/Sb through E-type galaxies, it is not expected to accrete significant amounts

of matter until z = 0, i.e. these old LBGs at z = 1.5− 2.5 seem to already have ≥ 50% of their

present-day mass. This a posteriori justifies to some extent our use (for simplicity) of closed-box

models.

The lower redshift BX and BM galaxies are also correctly predicted by our model grid, both in

terms of colours (see Fig. 4.1) and physical parameters. Erb et al. (2003) derived mean dynamical

masses of Mdyn > 4× 1010M� and mean SFRs of 16 M� yr−1 for their sample of 16 galaxies at

2.0 ≤ z ≤ 2.6, yielding a mean sSFR = 4× 10−10 yr−1. This is in good agreement with our

model predictions for spirals (see Fig. 3.8). Typical stellar masses in our Sa-type models at

these redshifts are 2.5 × 1010M� with roughly the same mass still residing in the gas-phase.

40% of their sample showed evidence for ordered rotation indicative of gaseous spiral disks, in

agreement with our assumptions.

In Fig. 4.2 we compare the magnitude and colour evolution of our E, Sa, and Sb galaxies to

a large sample of LBGs compiled by Steidel et al. (2003) and Reddy et al. (2006). These three

models are found to enclose the full range of R-band magnitudes observed for LBGs in the

redshift range 1 ≤ z ≤ 3.8. Our Sa-type model yields the best overall match to the observed

magnitudes, suggesting that LBGs are likely progenitors of local early-type spirals, confirming

our above results based on spectroscopic masses and metallicities. Further support for this

scenario comes from excellent agreement of the observed colour evolution of LBGs over the

redshift range 1.0 ≤ z ≤ 3.5 with our models. The scatter of observed colours at the high-
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Figure 4.2:

Top panel: Redshift evolution of apparent
R-band magnitudes for our E, Sa, and Sb
models. Shown with black solid points are
data from Reddy et al. (2006) for LBGs in
the GOODS-North field, grey dots show
LBGs from Steidel et al. (2003). The dot-
ted line in the top panel corresponds to the
selection limit of R < 25.5.

Middle panel: Evolution of U−R colours.
Data points as above.

Bottom panel: Evolution of R − Ks colours
for E, Sa, Sb and several burst models
with bursts occuring at galaxy ages of
tB = 2.0, 2.5, 3.0 and 4.0 Gyrs (according
to redshifts zB = 2.45, 2.06, 1.77, and 1.34).
For the burst models we only show the
evolution for the first 600 Myr after the
onset of the burst. After this time SFRs
and hence UV luminosities have decreased
considerably.
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redshift end, z ≥ 3.0, is most likely due to a combination of photometric scatter resulting from

the faint U-band magnitudes (Steidel et al., 2003) and the stochasticity of the attenuation due to

intergalactic hydrogen (Bershady et al., 1999; Tepper-García & Fritze, 2008).

4.3 BzK Galaxies

4.3.1 Colour selection

Daddi et al. (2004) proposed a photometric two-colour selection based on a combination of B, z,

and K-band magnitudes, giving rise to their name “BzK”-galaxies. It targets both passive and

star-forming galaxies in the redshift range 1.4 ≤ z ≤ 2.5.

Star-forming BzK (sBzK) galaxies can be selected via their BzK value by

BzK = (z−K)AB − (B− z)AB > −0.2, (4.5)

(z
-K

) A
B

(B-z)AB

E(B-V)=0.5mag

E
Sa
Sd

tB=0.5 Gyr
tB=1.0 Gyr
tB=1.5 Gyr
tB=2.0 Gyr
tB=2.5 Gyr
tB=3.0 Gyr

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6

star-forming BzK passive BzK

z=
1.4

z=
2.

5

Figure 4.3: Colour selection scheme for BzK galaxies over-plotted with the part of our model grid that the BzK selection
scheme aims at - galaxies with redshifts 1.4 ≤ z ≤ 2.5. In the bottom middle of the plot we show reddening vectors
for E(B − V) = 0.5 mag for both extreme redshifts z = 1.4 and z = 2.5. Large black squares mark the low-redshift
end of the targeted redshift range at z = 1.4. Thin lines mark the colour evolution of several models of Sb-progenitors
undergoing a starburst with bs = 0.75 at a galaxy age of tB.
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Figure 4.4:

Top panel: BzK criterion as function of
redshift for our E, Sa, and Sd models.
With thin dashed lines we also show tracks
of models undergoing bursts with bursts
starting at galaxy ages of (from right to
left) 0.5− 3.0 Gyr in steps of 0.5 Gyr. The
shaded regions mark the targeted redshift
region where models fulfil the BzK selec-
tion criteria (green), models that are missed
(red), and models contaminating the selec-
tion at higher and lower redshifts (blue).

Bottom panel: Change of BzK, ∆BzK,
incurred by an intrinsic reddening of
E(B−V) = 0.5 mag.
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while passive BzK (pBzK) galaxies are also required to have red (z-K) colours:

BzK < −0.2 ∩ (z−K)AB > 2.5 (4.6)

In Fig. 4.3 we show the relevant part of our model grid in the redshift range 1.4 ≤ z ≤ 2.5

overlaid with both BzK selection criteria. As expected the models of Sa and Sd-type galaxies are

correctly retrieved with the photometric selection of star-forming galaxies in this redshift range.

Note that also the undisturbed E-type model fulfils the sBzK criterion, since at redshifts z & 1.4

it still has a remaining SFR of ≈ 10 M� yr−1.

The region selected by the pBzK criterion is not reached by the undisturbed E-model, but only

by post-starburst models with relative early bursts tBurst . 1.5 Gyr or z < 3. This indicates that

a starburst followed by a rapid termination of star formation is required to reach the red (B-z)

colours.

In the top panel of Fig. 4.4 we plot the BzK values for a wide range of dust-free models of our grid.

The green shaded region shows the targeted selection range of BzK > −0.2 and 1.4 ≤ z ≤ 2.5
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(light green region) and indeed this region overlaps with our model grid. However, there are

several regions that only fulfil one of the criteria and hence are either missed by this colour

selection or contaminate the clean redshift selection as outliers at lower and higher redshifts.

As described above post-starburst models do not fulfil the criterion, but there is significant

contamination from higher redshift galaxies at 2.5 ≤ z ≤ 3.2 that also fulfil the BzK selection.

The bottom panel of Fig. 4.4 shows the changes ∆BzK incured by adding an intrinsic reddening

of E(B− V) = 0.5 mag. Changes are small in the target redshift range 1.4 ≤ z ≤ 2.5: −0.1 .

∆BzK . 0. At lower redshift and in particular at higher redshift ∆BzK drops rapidly, causing

galaxies to drop out of the BzK selection.

4.3.2 Properties of BzK galaxies

Most recent studies of BzK-selected galaxies rely on photometric observations alone so that

spectroscopic redshifts exist for only a small sample of galaxies. Daddi et al. (2004) found a

median redshift 〈z〉 ≈ 2.0 (range 1.4− 2.5) from the K20 survey. Reddy et al. (2005) derived

〈z〉 = 2.01± 0.33 and 〈z〉 = 1.70± 0.18 for his sample of sBzKs and pBzKs respectively, and

Hayashi et al. (2009) derived redshifts for 15 galaxies from Hα and found values ranging from

1.2 to 2.1 with 〈z〉 ≈ 1.7. These results indicate that the BzK selection, although principally

selecting galaxies out to z . 3, mostly culls galaxies with 1.4 ≤ z . 2.0 with fewer candidates

at 2.0 ≤ z ≤ 2.5. The exact reason for this is not clear yet, but in part is certainly caused by

technical difficulties in measuring redshifts in the redshift range 2.0 ≤ z ≤ 2.5 (see discussion in

Hayashi et al., 2009).

Stellar masses and star formation rates as derived from SED fitting and UV luminosities are

available for much larger samples, although with significantly differing (mass) completeness

limits. Daddi et al. (2004) found stellar masses of (0.6 − 5.0) × 1011 M� and a mean SFR of

210 M� yr−1 for their sample of 30 galaxies with spectroscopic redshifts. Similar high masses of

≈ 1011 M� and SFRs of a few 102 M� yr−1 were also found by Daddi et al. (2005, 2008), de Mello

et al. (2004), Reddy et al. (2005), and Kong et al. (2006).

In a deeper study (mass completeness down to 1010 M� as compared to ≈ 1011 M� in previous

studies), Hayashi et al. (2009) found stellar masses of (0.6− 15) × 1010M�, but similarly high

SFRs of (50 − 700) M� yr−1. The intrinsic reddening in all those cases is significant, with a

median values in the range E(B− V) = 0.2− 0.5 mag but reaching up to E(B− V) = 1.0 mag

in the most extreme cases. All these values are correctly explained by our early type E and Sa

models in the respective redshift range z ≈ 2.

For these models spectroscopically derived metallicities from Hayashi et al. (2009) of 12 +

log(O/H) = 8.2− 8.9 confirm results from our models of 12 + log(O/H) = 8.9 (E-model) and
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Figure 4.5: Star formation rates of several
models from our grid as a function of
redshift for fixed K-band magnitude, i.e. their
masses generally changes with redshift.
Most lines are for a K-band magnitude of
KVega = 20.0 mag, but we also show the
E-type model for K-band magnitudes of
KVega = 21.0 mag and KVega = 22.0 mag
(dotted lines).
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12 + log(O/H) = 8.5 (Sa). The lower value of 12 + log(O/H) = 8.2 (found for the lowest mass

galaxy in their sample) is in excellent agreement with predictions of our lower-mass Sb-model.

To allow a more quantitative comparison of these properties we show the SFR of several galaxies

from our grid as a function of redshift for a fixed K-band magnitude in Fig. 4.5. It is evident that

at z & 3 all models overlap due to their young ages and very active star formation activity. At

z ≈ 2, a model galaxy with KVega = 20.0(21.0) mag has a SFR of ≈ 100(45) M� yr−1, in excellent

agreement with observational findings. It also confirms the lower star-formation rates found

by Hayashi et al. (2009) in their deeper sample. The very sharp and narrow peaks shown in

this Figure are due to bursts in their very early phases, when the SFR reaches its peak, but

the optical luminosity as traced by the observed K-band magnitude did not yet have the time

to fully develop. These sharp peaks can also explain the finding of a very high SFR object

with comparably little mass in Hayashi et al. (2009). Another possible explanation could be a

significant underestimation of the stellar mass when a small amount of young stars outshines a

much more massive host galaxy as described in Sect. 3.5.3.

Kong et al. (2006, their Fig. 12, bottom panels) show a maximum SFR that increases roughly

linear with increasing stellar mass, resulting in a roughly constant maximum sSFR of sSFRmax =

5×Gyr−1. Similar values are also found as peak sSFRs for our starburst-models with bursts at

z ≈ 2. This is another piece of evidence that our model grid presented in Chapter 3 gives an

excellent description of BzKs over a wide range in redshift and allows to determine a wide range

of physical parameters for these objects even without spectroscopy.
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4.4 Extremely Red Objects

The advent of the first deep NIR observations revealed the existence of a new population of

Extremely Red Objects (EROs; Elston et al., 1988, 1989) that are comparably bright in the NIR,

mainly the K-band, but very faint in the optical. Typical colour selection criteria hence are

R− K > 5− 6 or I − K > 4.

Since their first detection evidence has accumulated that EROs are not one single population, but

rather consist of several subpopulations. One possibility to explain their colours are extremely

dusty starbursts (Cimatti et al., 1997; Dey et al., 1999; Smith et al., 2001; Smail et al., 2002; Brusa

et al., 2002; Nagamine et al., 2005; Stockton et al., 2006) with extinctions reaching E(B− V) =

0.5− 1 mag (Cimatti et al., 2002a; Bergström & Wiklind, 2004; Georgakakis et al., 2006). Other

EROs feature evidence for an old underlying population with a continuum break, only little

extinction and no ongoing star formation (Soifer et al., 1999; Glassman & Larkin, 2000; Daddi

et al., 2000; Cimatti et al., 2002a; Miyazaki et al., 2003; Doherty et al., 2005).

In order to derive accurate photometric redshifts, the template set has to be able to reproduce

these two populations. In Fig. 4.6 we present the R− K (upper panel) and I − K (bottom panel)

colour evolution of our model grid.

4.4.1 Colour selection

As can be seen from Fig. 4.6 normal undisturbed and dust-free models do not reach the extremely

red colours to be considered as ERO. However, by adding starbursts followed by an exponen-

tially declining SFR we are able to reproduce the observed extremely red colours even in the

absence of dust. The reddest R− K colours are reached around z ≈ 2, depending on when the

burst started. The time delay between the bluest phase at the very onset of the starburst and the

reddest colours during the ERO-phase, however, remains roughly constant at ≈ 2 Gyr (in the

case of burst decline times of 250 Myr), independent of the time at which the burst starts.

The resulting redshift range in which galaxies undergo an ERO phase is in good agreement with

spectroscopic redshifts derived for EROs by Moustakas et al. (2004) and Roche et al. (2006).

4.4.2 Properties of EROs

Fig. 4.6 also shows that whether or not a galaxy reaches ERO colours during its post-starburst

evolution mainly depends on how early its burst took place. All starbursts earlier than z = 2.5
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Figure 4.6: Colour evolution with redshift
for a representative part of our model
grid. Horizontal red lines mark the
colour selection criteria for Extremely
Red Objects (EROs): R − K > 5 (top
panel) and I − K > 4 (bottom panel).
The upper part of the top panel shows
the model for the ERO number density
as function of redshift from Roche et al.
(2003), normalized to a peak-value of one.
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undergoing only passive evolution after the burst easily meet the R−K > 5 criterion, only those

earlier than z = 3 the I − K > 4 threshold. Clearly the redder the colour of an ERO, the higher

must have been the redshift when its starburst was triggered. A dust-free ERO with R− K > 5.5

or 6 for example must have had its starburst at z > 3 or z > 4. These (post-)starburst galaxies

must have evolved passively since then, i.e. over a time span of 1− 2 Gyr. This implies that the

K20 EROs (Cimatti et al., 2002a), which are observed to be very massive at z ≈ 2 where they

are currently observed, must not have accreted any significant amounts of gas to fuel new SF

between z = 3− 4 and z = 2. At best, they could have increased their mass by dry mergers – if

those existed already – during this time-span. This explains the old ages of several Gyrs found

by Cimatti et al. (2002a). Starbursts triggered at z < 2 do not undergo an ERO phase even in the

case of purely passive evolution, so that all z < 2 EROs must show at least some amount of dust
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Figure 4.7: Colour evolution of one
starburst model with tBurst = 1.0 Gyr
(zBurst ≈ 3.8) for a wide range of exponen-
tial decline times from 25 Myr to 1 Gyr.
The colour evolution of the undisturbed
E-type model is shown for comparison.
The red horizontal line marks the ERO
selection criterion.

reddening.

The existence of a red post-starburst sequence, i.e. the fact that galaxies in their late post-starburst

stages have almost identical colours independent of the beginning of their burst (see Sect. 3.5.6)

gives a physical explanation for the model of ERO number counts as a function of redshift and

K-band magnitude derived on the basis of luminosity functions by Roche et al. (2002, 2003). This

model, shown in the very top of Fig. 4.6, shows an increasing number density from z ≈ 3.5 to a

maximum at z ≈ 1.2 and a sudden drop in the number density of K < 21 mag EROs at z . 1.

With increasing age of the universe, i.e. decreasing redshift, galaxies are more likely to undergo

a starburst that is then followed by an ERO post-starburst phase. The sharp drop at z ≈ 1 almost

perfectly coincides with our red post-starburst sequence dropping out of the ERO selection. One

possible future application of these results is to reconstruct the frequency of mergers without

subsequent gas re-accretion from the redshift distribution of this population.

In Fig. 4.7 we present the colour evolution of one particular burst model with a burst occuring

at a galaxy age of tB = 1 Gyr, for which we vary the decline time of the burst over a wide range

from 25 Myr to 1 Gyr. We find that only bursts with SFR decline times shorter than 500 Myr

reach ERO colours.

Particularly noteworthy is the time delay between the onset of the burst and the time when the

ERO reaches its reddest colours. For the model with decline time τ = 250 Myr this time span

is as long as 1.8 Gyr, while it only takes roughly 1 Gyr for τ ≤ 100 Myr. At this time after the

burst the galaxy is still in an Hδ-strong phase and would spectroscopically be classified as an

a+k or E+A galaxy, depending on nomenclature (Dressler et al. (1999); also see Falkenberg et al.

(2009a,b) for more details on the modelling of post-starburst galaxies using galev models). Ob-

servational evidence for this scenario comes from Doherty et al. (2005) who found that ≈ 30%

of all EROs are found in this a+k phase. Using our grid of burst models we can therefore suc-
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Figure 4.8: Minimum amount of dust
reddening required to produce colours
that reach the R − K > 5 mag colour
selection criterion. Several (post-)starburst
are also shown but not included in the
caption; for these the identification is
identical with the one used in Fig. 4.6.
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cessfully explain not only the photometric, but also spectroscopic properties of this interesting

galaxy population.

4.4.3 EROs as dusty starbursts

Another possible explanation to the extremely red colours is reddening due to significant amounts

of dust within the galaxy. To explore this in greater detail we derived as a lower minimum the

reddening that is required to reproduce the colour selection criterion R− K = 5 as a function

of redshift and underlying galaxy type. The result is shown in Fig. 4.8. While as expected from

previous plots post-starburst galaxies do not require any reddening, the required reddening for

our elliptical and spiral models at redshifts z ≥ 0.8 are significant, although not unreasonably

high (E(B− V) & 0.1 and & 0.3 mag respectively). For our peak-starburst model, however, a

dust reddening in excess of 0.5 mag is required to turn the intrinsic very blue colours into the

observed red colours.

At low redshifts z . 1 the minimum dust reddening increases very rapidly with decreasing

redshifts, reaching values of E(B − V) > 0.6 mag for an assumed redshift of z = 0.3. We

can approximate this redshift dependence of the minimum dust reddening by a simple linear

relation:

E(B−V)min(z) = 1.00− 1.62z (0.25 > z) (4.7)

= 0.75− 0.69z (0.25 < z < 1.1) (4.8)

Galaxies that require a reddening near this minimum value need to have the intrinsic red colours

of an E or Sa-type model. These galaxies, however, are observed to contain only little gas and

therefore only little dust. Local starbursts can harbour enough gas and dust to reach the high

reddening factors E(B−V) ≥ 0.6 at z < 1. We therefore conclude that the observation of ERO-
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Figure 4.9: Minimum stellar mass that is
required to reach an apparent magnitude
of K = 20 mag. The grey thick line shows
a 2nd-order polynomial fit to the models
(see text for parameters).

like colours at low redshift is a strong indicator for a dusty and actively star-forming galaxy,

while at higher redshift also passively evolving galaxies are likely ERO candidates.

In a next step we now compare the stellar masses that yield an observed K-band magnitude of

K = 20 mag. The results for several galaxy types as a function of redshift are shown in Fig. 4.9.

For all galaxies we require a R− K colour of R− K > 5 by adding the amount of dust reddening

shown in Fig. 4.8.

A surprising and very important result is that the stellar masses depends very little on galaxy

type showing only a very low dispersion of 0.15 dex at redshift z = 1, increasing to 0.3 dex

at redshift z = 0.5. This can be used to estimate accurate stellar masses for galaxies with

known redshift, independent of the galaxy’s star formation history ranging from passive (post-

starburst) galaxies to ongoing starbursts. A second-order polynomial fit over the redshift range

z = 0.5− 3.5 provides a good approximation to the model curves:

log
(

MERO
stellar[M�]

)
= 17.89 + 0.97z− 0.11z2 − 0.4×KVega (4.9)

4.4.4 Discriminating between dusty and passive EROs

One advantage of evolutionary synthesis models such as galev is that they allow us to search

for differences between models with similar observables as in the case of dusty starbursts (DSB)

and post-starbursts (PSB) with identical R−K colours. The intrinsic output of galev are spectra

from which we can then generate SEDs in any filter combination. One example is shown in

Figure 4.10 where we compare the SEDs of the extreme ERO cases. Shown with blue circles is

the full SED of a PSB galaxy with burst onset at a galaxy age of 1.0 Gyr and observed at redshift

z = 1.6 in a commonly used filter combination of the five SDSS bands ugriz, the UKIDSS YJHK

filters in the near-infrared and the four Spitzer-IRAC bands at 3.6 to 8.0µm. As a comparison we
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Figure 4.10: Comparison of a dusty
starburst SED (red diamonds) and a
post-starburst SED (blue circles) at redshift
z = 1.6, both having identical colours of
r− K = 5.3 mag and normalized to K = 20
mag. The SED is formed by magnitudes in
the SDSS ugriz, UKIDSS YJHK and IRAC
[3.6],[4.5],[5.7] and [8.0] filters that are
shown for reference on the bottom of the
plot.
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show the SED of a DSB at the same redshift, for which we added dust to yield identical colours as

the PSB galaxy (r− K = 5.3 mag). Both magnitudes have been normalized to the same observed

K-band magnitude of K = 20 mag to facilitate comparison. Despite their identical r− K colours

their overall SEDs look very different: The DSB has a steep overall slope and is very bright in

the IRAC bands because dust does not significantly impact the rest-frame NIR observed in these

bands. The PSB SED on the other hand is relatively faint in the MIR and has bluer colours than

the DSB red-wards of the H-band. It is also brighter than the DSB in the i- to H-band. In r-

and K-band, both galaxies are, by construction, equally bright. At short wavelengths the PSB

is much fainter (& 2 mag in the u-band) than the DSB, although both galaxies are likely to be

unobservable with most current observing facilities.

Although this was just one out of many possible examples it nonetheless demonstrates the

capabilities of our galev models to help predict observable properties. This ultimately allows

us to identify and discriminate between rare types of galaxies which otherwise is extremely

difficult to do purely based on observations.

4.5 Distant Red Galaxies

4.5.1 Colour selection

In the recent past there has been some controversy in the nomenclature used in the literature.

In the following we will adopt the currently most widespread terminology and use the term

Distant Red Galaxies (DRGs) for galaxies fulfilling the criterion

(J − K)Vega > 2.3 (4.10)

Franx et al. (2003), van Dokkum et al. (2003, calling them Luminous Red Galaxies).
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Figure 4.11: Upper part: (J−K)Vega colour
evolution of a representative part of our
model grid. The solid horizontal marks the
selection criterion for Distant Red Galaxies
of J−K ≥ 2.3 mag. Lower part: Extinction
ratio E(J − K)/E(B − V) as function of
redshift for two different choices of the
extinction law.

In the upper part of Fig. 4.11 we show the J-K colour evolution as a function of redshift for

several models from our grid. In the ideal case that all galaxies are dust-free at all redshifts only

models with early starbursts tB ≤ 0.7 Gyr followed by a rapid termination of SF afterwards reach

the red J − K colours needed to be considered DRGs.

In the lower part of Fig. 4.11 we also give the ratio of E(J − K)/E(B − V). Over the relevant

redshift range 1 ≤ z ≤ 4 this ratio has values of 1.0− 1.2. Using this ratio we can make a wider

range of models reach the required colour criteria of (J − K) > 2.3. For our E-type model in the

range 2 ≤ z ≤ 4 and models with later starbursts (tB ≈ 1 Gyr) we require an additional modest

dust reddening of E(J− K) ∼ 0.2 or E(B−V) ∼ 0.17. Similar amounts of dust (E(B−V) ∼ 0.25

mag) are needed to bring our spiral models without starburst into the colour range of DRG range

for 3.0 ≤ z ≤ 3.5. The values for the dust reddening required by our models to meet the colour

selection criteria as well as the redshift range we predict for DRGs are in excellent agreement

with spectroscopic redshifts presented for several DRGs in Franx et al. (2003, z = 2.6± 0.7), van

Dokkum et al. (2003, z = 2.4− 3.5), and Quadri et al. (2007b, z = 2− 4).

4.5.2 Physical parameters

Labbé et al. (2005) found that ∼ 3/13 of their DRG sample are well described by old popu-

lations with mean ages of several Gyr and negligible ongoing SF, which we confirm with our
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post-starburst models. For the spectra of the remainder of their sample galaxies Labbé et al.

(2005) obtained good fits with constant SFR models of age ∼ 1.2 Gyr with moderate dust red-

dening AV ∼ 1.7 mag, equivalent to E(B − V) = 0.5 mag. Förster-Schreiber et al. (2004) and

van Dokkum et al. (2004) derived extinctions, mean ages and SFR for a larger sample of ∼ 30

DRGs at z = 2.0− 3.5. They found SFR-weighted mean ages between 0.9 and 2.5 Gyr, SFRs of

70 . . . 170 M� yr−1, extinctions of AV ∼ 1.2 mag and stellar masses M∗ ∼ (1.3− 4.9)× 1011M�.

All those results are in excellent agreement with our model predictions, e.g. of our E-type model

(AV & 0.5 mag to reach the DRG criterion, MS(z = 3.5) = 2.6 × 1011M�, SFR(z = 3.5) =

140 M� yr−1). Similarly high SFR (few ×102 M� yr−1) were also found by Reddy et al. (2005)

and Papovich et al. (2006).

The metallicity of the E-type model at these redshifts (z ∼ 2− 3) has already reached values

of 2/3 of solar, well within observational uncertainties of a factor 2 around the solar value.

Shapley et al. (2004) studied DRGs and obtained good fits to their spectroscopic data with solar-

metallicity models (solar metallicity was derived from optical emission lines available for their

sample) with moderate amounts of dust (E(B− V) = 0.1− 0.2) and ages of 1− 2 Gyr, in good

agreement with the input values of our models.

We conclude that our current model grid is able to reproduce most if not all properties observed

so far in the population of DRGs. Our models give a wealth of additional information about

DRGs and, in particular, suggest evolutionary links to progenitor and successor galaxy popu-

lations. This is beyond the scope of the present chapter and will be the topic of a following

paper.

4.5.3 DRGs as Dusty Red Galaxies

In analogy to our discussion of EROs above, it is also possible to reproduce colours of DRGs by

adding dust to star-forming galaxies. The amount of reddening required to give star forming

galaxies colours of a DRG depends on both galaxy type and redshift and is shown in Fig. 4.12.

Over the large redshift range z = 1− 4.5 the amount of reddening is limited to E(B−V) . 0.4

mag for even the peak starburst model. At lower redshift z . 0.6 the required reddening

again increases rapidly with decreasing redshift. However, ongoing SF activity in moderately

dust-obscured, massive early-type spirals (e.g. Sa-type models) with SFHs in between our Sa

and E-type models is a possible way to also explain DRGs at lower redshifts z ∼ 1 as found

observationally by Grazian et al. (2006) and Conselice et al. (2007).

In Fig. 4.13 we show for a range of models the stellar mass that is required to yield a K-band

magnitude of K = 20 mag and DRG-like colours of J − K = 2.3mag. We find that this stellar

mass is roughly independent of galaxy type and hence of star formation history, showing only
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Figure 4.12: Minimum amount of required
to reach the red J − K = 2.3 mag colour
required by the DRG selection criterion.
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a small spread of 0.2− 0.4 dex. Even more remarkably, the curve is roughly flat for z ≈ 2− 4,

allowing for a direct translation of observed K-band magnitudes into stellar masses. We fitted a

third-order polynomial function (shown as grey line in Fig. 4.13) to our models over the redshift

range z = 0.3− 5.2 to allow observers to directly get a stellar mass from their observations:

log
(

MDRG
stellar[M�]

)
= 1.50 + 2.07z− 0.74z2 + 0.089z3 − 0.4×KVega (4.11)

4.6 Luminous Red Galaxies

Luminous Red Galaxies are identified with less distant passively evolving galaxies commonly

found in the Sloan Digital Sky Survey (SDSS) and in the 2dF Redshift Survey (e.g. Eisenstein

et al., 2001; Cannon et al., 2006).

Fig. 4.14 shows observed g− r colours of a large sample of LRGs from the 2dF-SDSS LRG and

QSO survey (2SLAQ, Cannon et al., 2006). We overlay these data with the predicted colour
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Figure 4.14: Top panel: Comparison of a large sample of observed LRG colours from 2SLAQ (Cannon et al., 2006)
overlaid with the colour evolution of our undisturbed E-type model as well as several of our post-starburst models
(using solar metallicity; models with half solar metallicity are bluer by ≈ 0.07 mag) with burst onset times varying from
1.0 Gyr to 6.5 Gyr. Bottom panel: Predicted apparent i-band magnitudes for a range of stellar masses.

evolution of our undisturbed E-type model as well as several of our burst models with bursts

starting at galaxy ages of 1.0− 6.5 Gyr and fixed-to-solar metallicity. Note that unlike most mod-

els presented before we here chose to use solar metallicity instead of half solar metallicity since

LRG are the most massive galaxies (Eisenstein et al., 2003; Loh & Strauss, 2006; Wake et al., 2006;

Ross et al., 2008) and are found at relative low redshifts (e.g.. Cannon et al., 2006). Their high

mass is likely to be associated with high metallicities as observed in mass-metallicity relations

(Tremonti et al., 2004; Erb et al., 2006a), rendering solar metallicity a more likely assumption

than the lower value of half solar.

Fig. 4.14 shows that with our model grid we are able to explain the full range of observed colours

over the full redshift range 0.3 ≤ z ≤ 0.8. In the lower panel of Fig. 4.14 we over-plot observed

apparent magnitudes with evolutionary tracks of different masses. It is evident that most LRGs

have high stellar masses in the range of (0.5− 1.0)× 1012 M� with the brightest galaxies reaching

masses of a few ×1012 M�, placing them at the bright end of the galaxy mass function. They are

hence most likely the progenitors of giant ellipticals or cD galaxies in the local universe. This

is also supported from their large correlation length found in numerous clustering studies (e.g.,

Eisenstein et al., 2005; Ross et al., 2007; Wake et al., 2008).

In Fig. 4.15 we compare solar-metallicity post-starburst models with different burst onset times

ranging from 0.5 Gyr to 6.0 Gyr at three different redshifts z = 0.2, z = 0.4 and z = 0.7 to the

SDSS LRG template spectrum1. This clearly shows that our model grid is able to successfully

explain the overall spectral shape of LRGs at all relevant redshifts.

At moderately high redshifts z = 0.7 (and hence beyond the redshift range of the original LRG

selection by Eisenstein et al. (2001)) our models predict too high a flux short-wards of 5000
1The SDSS template spectrum can be obtained from http://www.sdss.org/dr7/algorithms/spectemplates/index.html
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Figure 4.15: Spectra of post-starburst
galaxies compared to the SDSS template
spectrum for Luminous Red Galaxies
(thick solid line). For reference we also
show the SDSS ugriz-filters for each
redshift.

Å. The reason for this is that the stellar population formed as a result of the starburst is still

too young (the maximum galaxy age at z = 0.7 is 6.5 Gyr, assuming a formation redshift of

zform = 8). However, there is observational evidence for a change in the population of LRGs

at these redshifts. In their average spectrum of LRGs at z = 0.7− 0.9, Cool et al. (2008) found

emission lines of [O ii]3727Å, a strong indicator of SF activity, as well as an increased strength of

Balmer absorption lines indicating an intermediate-age population. Both aspects can be naturally

explained with our models if we assume a shorter exponential decline time as discussed in the

context of EROs in Sect. 4.4. Further evidence for this scenario has been obtained by Eisenstein

et al. (2003), Treu et al. (2005), Le Borgne et al. (2006), and Roseboom et al. (2006) who all

found convincing evidence for ongoing and/or recent SF activity based on either the detection

of [O ii]emission lines or strong Balmer absorption lines and the k+a phenomenon, confirming

our scenario of LRGs being the remnants of starbursts at higher redshifts.
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4.7 Summary and outlook

In the previous chapter we generated a large grid of chemically consistent GALEV models of

both undisturbed galaxies corresponding in their z = 0 properties to E and Sa through Sd as well

as galaxies undergoing a strong starburst at some stage during their evolution. In this chapter

we use this grid to check empirically derived colour selection criteria and to compare model

galaxies to observations in terms of physical parameters such as masses, star formation rates

and metallicities. Galaxy classes under investigation are Lyman Break Galaxies (classical LBGs

as well as BM/BX types), BzK galaxies, Extremely Red Objects, Distant Red Galaxies as well as

Luminous Red Galaxies.

• Lyman Break Galaxies: All undisturbed galaxies of our grid fulfil both the classical defi-

nition of LBGs at redshifts z & 3 as well as the lower-redshift BX (z = 2.0− 2.5) and BM

(z = 1.5− 2.0) extensions. However, galaxies undergoing an early burst followed by SF

truncation quickly become red and hence drop out of this colour selection. In addition

to the rest-frame FUV colour selection our model grid correctly describes the rest-frame

optical represented by R − K colours. Based on the shape (colours from U through K) and

the normalisation (apparent magnitudes as function of redshift) of their SEDs we conclude

that LBGs are most likely progenitors of either local elliptical or early-type spiral galaxies,

in agreement with observational evidence for massive rotating gas-disks found in some

LBGs. For these types our model predictions of LBGs confirm to high accuracy the stellar

masses, star formation rates and gas-phase metallicities derived from spectroscopic obser-

vations. This agreement provides a solid basis for the interpretation of the bulk of the LBG

population without spectroscopy.

• BzK Galaxies: Our models predict that even galaxies outside the targeted redshift range of

1.4 ≤ z ≤ 2.5 are potential BzK galaxies as long as they do not contain significant amounts

of dust. Within this range all undisturbed models fulfil the BzK criterion. Our undisturbed

E-type model is correctly identified as sBzK, while the pBzK criterion is only fulfilled by

post-starburst galaxies. Stellar masses, star formation rates and metallicities as observed

by several authors are well matched by our E- and Sa-type models with contributions

by later spiral types at fainter magnitudes. Objects with low masses but high SFRs are

well matched to our burst models. The maximum burst strength as found in Chapter 3

furthermore explains the clear upper limit found for SFRs as a function of stellar mass.

• Extremely Red Objects: Galaxy models with early bursts reach colours in their post-

starburst phases that are typically found in Extremely Red Objects without requiring any

dust reddening in the redshift range z ≈ 1 . . . 3. If the decline time of the burst is suffi-

ciently short (τ . 200 Myr) the galaxy spectra are similar to E+A spectra characterised by
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strong Balmer absorption features, in excellent agreement with observations in ≈ 30% of

all ERO galaxies. This is the first time that these features are described by evolutionary

synthesis models and confirms the general applicability of our model grid. There is a cor-

relation between maximum redness to increase with decreasing galaxy age at the onset of

the burst, potentially allowing indirect insight into the merger rates at redshifts z = 2− 5.

Our derived colour evolution with redshift furthermore offers a physical explanation for

the observed ERO number density evolution.

• Distant Red Galaxies: Depending on the amount of intrinsic dust reddening, our models

can explain Distant Red Galaxies (DRG) with z ≈ 1.5 . . . 4 by either dust-free post-starburst

models with very early burst or by star-forming galaxies with small amounts of dust, in

agreement with observations. DRG at lower redshifts require increasing amounts of dust

to fulfil the DRG colour selection criterion and hence dusty starbursts are probably no DRG

candidates. Based on a detailed comparison of model predictions with observed masses,

metallicities and star formation rates we conclude that DRGs are most likely the progenitor

of local ellipticals.

• Luminous Red Galaxies: Luminous Red Galaxies (LRGs) form a naturally extension of

DRGs towards lower redshifts. Low-redshift LRGs (z . 0.5) are well described by our

post-starburst models if the burst age is ≥ 2 Gyrs. Higher redshift post-starburst models

in the redshift range z ≈ 0.7− 1 are intrinsically bluer than models at lower redshift, fitting

well with observational evidence for recent star formation in LRGs at these redshifts. Our

model grid correctly predicts the colour evolution of LRGs over the redshift range 0.3− 0.8.

From their observed magnitudes we derive masses of (0.5− 1)× 1012 M�, in the range of

the most massive galaxies observed locally and hence likely progenitors of giant ellipticals

and cD galaxies, in agreement with results derived from their clustering properties.

Based on these encouraging results from this first comparison of our model grid with observed

galaxies in these different classes we will next combine the grid of models presented here with

our new photometric redshift code GAZELLE to study a large sample of galaxies from a number

of deep fields on a galaxy by galaxy basis. This will give us not only accurate redshifts, but also

a wealth of physical parameters for a large number of galaxies over a range of redshifts, granting

us a deeper insight into galaxy formation and evolution.
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Abstract:

With the advent of deep photometric surveys the use of photometric redshifts, obtained with a
variety of techniques, has become more and more widespread. Giving access to galaxies with a
wide range of luminosities out to high redshifts, these surveys include many faint galaxies with
significantly sub-solar metallicities.

We use our chemically consistent galaxy evolutionary synthesis code GALEV to produce a large
grid of template Spectral Energy Distributions (SEDs) for galaxies of spectral types E and Sa
through Sd – one accounting in a chemically consistent way for the increasing initial metallicities
of successive stellar generations, the other one for exclusively solar metallicities – for comparison.

We use our new photometric redshift code GAZELLE based on the comparison of observed
and model SEDs. Comparing the photometric redshifts obtained using solar-metallicity tem-
plates when working on a catalogue of artificially created chemically consistent SEDs, typical
for low-metallicity local late-type galaxies and for intrinsically low-luminosity, and hence low-
metallicity, galaxies in the high-redshift universe, we find a significant bias resulting from this
metallicity mismatch. This bias consists in a systematic underestimate of the photometric red-
shift by typically ∆z ≈ 0.1 . . . 0.2 until z ≈ 1.2, depending on galaxy type, of distant, faint and
low-metallicity galaxies if analysed with solar-metallicity templates.
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5.1 Introduction

Most of today’s studies of large samples of high-redshift galaxies rely on photometric redshifts

comparing observed spectral energy distributions (SEDs), i.e. magnitudes and colours in multi-

ple filters, to a set of templates. For that reason the choice of the right set of template is crucial

to determine accurate and unbiased photometric redshifts. The most widely used templates are

either observed local templates, e.g. from Coleman et al. (1980), that do not include any evo-

lutionary correction, or templates generated with evolutionary synthesis models which in most

cases use fixed solar metallicities.

During the last years, evidence has accumulated that galaxies are not made out of stars of one

metallicity, but show a wide range from very metal-poor to more metal-rich stars. This holds true

not only for our Milky Way (Rocha-Pinto & Maciel, 1998; Ak et al., 2007), but also for external

galaxies like e.g. the LMC (Cole et al., 2000a) and giant ellipticals like NGC5128 (= Centaurus

A, Harris et al., 1999; Harris & Harris, 2000).

Studying samples of local star forming galaxies Skillman et al. (1989) showed a trend of decreas-

ing average metallicity of a galaxy with decreasing luminosity, used as an indicator of its mass,

and spanning more than 12 magnitudes in luminosity. Larger samples, compiled e.g. from the

SDSS (Tremonti et al., 2004; Kewley & Ellison, 2008) confirmed this mass-metallicity relation and

extended it to even lower masses (Lee et al., 2006).

This is particularly important with respect to high redshift galaxies in the early universe, since

those galaxies did not yet have the time to produce enough stars to enrich their ISM to high

metallicities. Studies of Lyman Break Galaxies (Pettini et al., 2001), Damped Lyman-α Absorbers

(Prochaska et al., 2003) and Gamma Ray Bursts (Prochaska et al., 2007) all show that galaxies get

progressively more metal-poor if they are observed at high redshift. Furthermore dwarf galaxies,

such as the LMC, that are metal-poor in the local universe, are observable out to considerable

redshifts in deep imaging surveys. Note that Erb et al. (2006a) found a mass-metallicity relation

for galaxies at redshifts of z ≈ 2, confirming that the local trend was already established in the

early universe.

For that reason evolutionary synthesis models that take the chemical enrichment of successive

stellar generations into account are in principle superior to more simplified models with fixed

metallicity. In Bicker et al. (2004) we showed that with appropriate star formation histories

(SFHs) our chemically consistent GALEV models agree well with a wealth of observed properties

for local and high-redshift galaxies and showed how the presently observed stellar metallicity

distributions in galaxies have evolved. In Bicker & Fritze (2005) we demonstrated the impact on

non-solar metallicities on the determination of star formation rates (SFRs) from emission lines

and UV-fluxes. Kodama et al. (1999) have shown that metallicities can have a significant impact
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on observed colours of high-redshift galaxies; the impact of metallicity on restframe colours was

studied by other authors. However, the impact of those generally bluer colours on photometric

redshifts has not been studied so far. In the present Letter we quantify the impact of neglecting

those sub-solar metallicities on photometric redshifts.

5.2 Creation of template SEDs

5.2.1 Input models

To study the chemical enrichment history of the common spectral galaxy types E and Sa through

Sd we used our chemically consistent galaxy evolution code GALEV. Assuming a closed-box

model, GALEV allows us to compute the chemical enrichment of a galaxy’s gas-reservoir from

the yields of dying stars. We use isochrones from the Padova-group (Bertelli et al., 1994) with

metallicities ranging from [Fe/H] = −1.7 to [Fe/H] = +0.3 and a Salpeter-IMF (Salpeter, 1955)

with mass-limits of 0.10 M� and 100 M�. Note that a different choice of the IMF, e.g. Kroupa or

Chabrier, does not affect the results obtained below. The spectral galaxy types are characterized

by an exponentially declining SFR for the E-model, SFRs proportional to the available gas-mass

for the Sa-Sc models (with factors of proportionality decreasing towards later types), and a

constant SFR scenario for the Sd. These SFHs were shown to provide a good match to today’s

galaxy templates, e.g. from Kennicutt (1992) in Bicker et al. (2004). To derive the effects on

photometric redshifts we also ran all those models again, this time fixing the metallicity to the

solar value [Fe/H] = 0.0. Our GALEV models also include line and continuum emission from

ionized gas, with line strength appropriate for the particular gaseous metallicity at each time.

The importance of emission lines for accurate photometric redshifts has recently been shown by

Ilbert et al. (2009).

To derive the SEDs for comparison with observations, we redshifted the spectra at all timesteps to

the redshift corresponding to the age of each galaxy spectrum, adopting a concordance cosmol-

ogy with H0 = 70 km s−1 Mpc−1, Ωm = 0.30 and Ω˘ = 0.70. We assume that all galaxies started

forming stars at z = 8. Variations of this formation redshift with spectral type, as e.g. sug-

gested by Noeske et al. (2007b,a) for the latest spectral types has little effect on the present study

since those show little evolution anyway. This means we consistently account for both evolu-

tionary and cosmological corrections. Since some galaxies at high-redshifts are found to contain

significant amounts of dust (e.g. Steidel et al., 1999), we convolve each spectrum with the dust at-

tenuation curve of Calzetti et al. (2000). We chose a range of extinctions from E(B−V) = 0.0 mag

to E(B−V) = 0.5 mag in steps of ∆E(B−V) = 0.05 mag. We include the effects of intergalactic

absorption following Madau (1995) and then convolve each spectrum with a set of typical filters,
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here taken to be the SDSS ugriz and the standard 2MASS JHK filters. Galaxies were normalized

so as to show by z=0 the average observed Johnson B-band magnitudes for their respective types

as given by Sandage et al. (1985a,b). We then added the bolometric distance modulus for each

redshift. This results in a total of ≈ 3200 template SEDs with smaller redshift intervals at lower z

and wider sampling at high redshifts for each of our ten models (5 types E, Sa-Sd, all chemically

consistent and with metallicity fixed to solar for comparison).

5.2.2 Addition of noise

To simulate real observations, we added Gaussian noise observational errors to each magnitude.

The amount of scatter added, ∆mi, depends on the magnitude mi of the i-th filter:

∆mi = a + b× exp(c×mi − d),

with a = 0.03 mag describing calibration or zeropoint uncertainties, b = 3.75 and c = 0.75 being

constants defining the shape of the curve. d depends on the depth of the underlying observa-

tions, here chosen to correspond to 5σ limiting AB magnitudes of (26,27,27,27,26,25,25,24) mag

for the (u,g,r,i,z,J,H,K) filters. This procedure was repeated 100× for each input SED, resulting

in an artificially created input catalog of ≈ 7× 105 galaxies for each model. For the following

analysis we then derived median values and 1 σ-uncertainties in bins of ∆z = 0.05.

5.2.3 Determining photometric redshifts

To derive the photometric redshifts we use our photometric redshift code GAZELLE described in

more details in Chapter 6. In principle it uses a χ2-algorithm to compare fluxes derived from the

observed SEDs with a range of template SEDs. The resulting χ2-values are then transformed into

normalized probabilities. Masses are derived by scaling the model SEDs as a whole to match

the observed SED on average. To determine 1σ-uncertainties for redshifts and all dependent

parameters (masses, SFRs, metallicities, etc.) we derive the minimum and maximum values

encountered while summing up normalized probabilities (from highest to lowest) until 68 %

have been reached. We restrict our template set to only undisturbed galaxies E, and Sa through

Sd, since those are well calibrated against observed galaxy templates, and match observations in

colours, spectra and metallicities (see Bicker et al., 2004 and Chapter 2 for a detailed comparison).

In the following, we will focus on the redshift determination and the best-match χ2-value.
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Figure 5.1: Chemical enrichment histories
for galaxies of different spectral types E
(top panel), Sa (lower panel, upper curves)
and Sd (lower panel, lower curves). The
blue solid lines marks the gas-phase or
ISM-metallicity, while the dashed lines
represent luminosity-weighted stellar
metallicities in different bandpasses.
Black points mark observed metallicities
(Zaritsky et al., 1994) of local galaxies.
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5.3 Results

5.3.1 Evolution of metallicity with redshift

In Fig. 5.1 we present the metallicity evolution of the different spectral galaxy types E, Sa, and

Sd with decreasing redshift. We show two different metallicity measures: The gas-phase or ISM

metallicity and the luminosity-weighted stellar metallicity in a set of different rest-frame filters.

The ISM metallicity is traditionally measured from emission lines, while stellar metallicities are

derived from stellar absorption lines, as e.g. Lick indices (e.g. Trager et al., 1998; Schiavon et al.,

2006), requiring spectra of much higher signal-to-noise ratio. Our models yield metallicities

at z = 0 of ZE = Z�, ZSa = 1.5 Z� and ZSd = 0.25 Z�, in good agreement with observed

metallicities, e.g. from Zaritsky et al. (1994).

The most important point with respect to this chapter, however, is that only the E and Sa models

reach enrichment levels comparable to solar metallicity. Later spiral types, i.e. the Sb-Sd models

only reach significantly sub-solar metallicities after a Hubble time, rendering the assumption of

solar metallicity independent of redshift and galaxy type invalid. While solar metallicity is a

moderately good approximation (Z(t) > 0.5 Z�) for early-type galaxies (E to Sa) back to fairly

young ages or high redshifts, it becomes less and less valid for later galaxy types, in particular

at earlier times or higher redshifts.

Low-metallicity stellar populations are brighter in the optical and UV (cf. Fig. 5.2), have bluer
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Figure 5.2: Spectrum of a 4 Gyr old
constant star formation rate model (Sd)
calculated in the chemically consistent way
(upper blue curve) and the fixed solar
metallicity only way (lower red curve),
both having identical masses.

colours (since their stars are hotter) and produce more ionizing photons compared to their equal-

mass solar metallicity counterparts. This leads to higher emission line fluxes and hence an over-

estimation of SFRs by up to factors ≥ 2 (Bicker & Fritze, 2005) if solar-metallicity calibrations

are used. At the same time, their higher overall luminosities lead to overestimations of galaxy

masses by factors up to ≥ 5 and their bluer colors lead to an underestimation of their stellar

population ages by factors up to ≥ 2, unless their sub-solar metallicities are properly taken into

account.

5.3.2 Impact on photometric redshifts

We ran three different sets of photometric redshift determinations, comparing (a) the solar metal-

licity SED catalog to solar metallicity SED templates, (b) the chemically consistent (CC) SED

catalog to CC SED templates, and (c) analysing the CC SED catalog using solar metallicity SED

templates. The outcomes of runs a) and b) are shown by the green and blue lines and symbols

in Figures 5.3 and 5.4; every datapoint represents the median-value in bins of ∆z = 0.05 in

redshift. As expected, we find very small χ2-values for the best match and excellent correspon-

dence between true and photometric redshifts. The third run analyzing the CC catalog with solar

metallicity templates mimics the wide-spread analysis method for observation of low-metallicity

galaxies in the early universe using close-to-solar metallicity SED templates. Those can either be

locally observed galaxies that naturally have higher metallicities than their high-redshift coun-

terparts, training sets of galaxies with available spectroscopic redshifts (and hence the brightest

and with the mass-metallicity relation also most metal-rich galaxies at each redshift) or solar

metallicity model templates. The result are shown as red symbols in both figures. As expected,

the best-match χ2/DOF-values (where degrees-of-freedom (DOF) means the number of filters)

for run (c) are significantly larger at almost all redshifts. The trend towards smaller χ2 values

at higher redshifts can be understood as a consequence of photometric uncertainties increasing

with decreasing brightness and finally a decreasing number of filters due to dropouts and mag-

nitudes falling below the detection limit. This in turn allows more flexible matching by varying

both shape, determined by galaxy type, redshift and extinction, and normalisation, i.e. galaxy

mass, of the template SED.



Sect. 5.3: Results 133

-1

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5  3  3.5  4

lo
g(

be
st

-m
at

ch
 χ

2  / 
D

O
F

)

true redshift z

E
Sa
Sd

Figure 5.3: χ2-value per degree of freedom (DOF) of best-matching galaxy-template combination as function of redshift
for three different galaxy types E (solid, red line), Sa (blue dash-dotted line) and Sd (green dashed line). In all three
cases we used solar-metallicity templates and chemically consistent input galaxies. Dark and light red shaded regions
mark the 1σ and 3σ ranges for the E-type model. The blue shaded region marks the outcome of the matched template
runs (solar vs. solar and CC vs. CC).

Fig. 5.4 shows the offsets between true and retrieved photometric redshifts that result from the

choice of templates not matching the observed metallicities. We also show the 1σ regions for

each galaxy type as filled regions. It is obvious that even for the near-solar metallicity galaxy

types E and Sa there are still significant offsets of ∆z = zphot − zspec ≈ −0.1 (equivalent to σz =

∆z/(1 + z) ≥ −0.05) until z ≈ 1.2. At higher redshifts z = 1.5 . . . 2.8 we also find a bias but this

is less prominent than at lower redshifts, in particular compared to the increased scatter at those

redshifts. At even higher redshifts z & 3 dropouts start to dominate the redshift determination.

The reason for these biases is that although the metallicity is near solar for the early types E

and Sa, the galaxy nevertheless contains a large fraction of lower metallicity stars (e.g. ≈ 2/3

of the U-band flux of nearby elliptical galaxies is emitted by stars with [Fe/H] ≤ −0.7; Bicker

et al. 2004). As a general trend, the retrieved photometric redshifts show a bias towards lower

redshifts. This trend can be understood from the bluer SEDs of the CC-models, generated by the

lower metallicity stars, that the photometric redshift code tries to compensate for by attributing

lower redshifts to its Z� templates. This offset is, in particular at low redshifts z ≤ 1, larger than

the typical scatter of œz ≤ 0.03 found for large samples of photometric redshifts (e.g. Mobasher

et al., 2007).

Furthermore, the amount of dust reddening also plays a role in the following sense: essen-

tially dust-free models with E(B−V) < 0.1 mag have larger best-match χ2 values and are more

strongly biased towards too low redshifts than models with more dust, reaching a maximum for

the Sd-type galaxy at z ≈ 0.4 where ∆z = −0.2 or equivalently σz = 0.14 (see dahed lines in

Fig. 5.4). This point is particularly crucial at z & 1 where we essentially observe the rest-frame

UV. We here are biased towards UV-bright objects, i.e. those that are not hidden behind large

amounts of dust. Photometric redshifts obtained by fitting solar-metallicity templates to those

galaxies are therefore even more strongly biased towards too low redshifts than the median of
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Figure 5.4: Redshift offset
∆z = zphot − ztrue for the elliptical
(top panel) and spirals Sa, Sb, Sc, and Sd
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green lines are for matching combinations,
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the analysis of lower metallicity galaxies.
Each point represents the median value
in a bin of width ∆z = 0.05. The dashed
lines in the lower panels show the bias for
E(B−V) ≤ 0.1 mag.

all extinctions presented above.

Observational evidence for the bias described here can be found e.g. in Ilbert et al. (2006, Fig.3).

There observed templates were used to derive photometric redshifts from a filter set similar to

the one used here, and a underestimation until z ≈ 0.6 and in particular at zphot = 0.3, zspec = 0.4

was found.

5.4 Conclusions and summary

We used our chemically consistent galaxy evolutionary synthesis models GALEV to study the

chemical enrichment histories of galaxies over a range of spectral types E and Sa through Sd.

The E-type galaxy reaches enrichment levels of Z > 0.5 Z� already at high redshifts z ≈ 4 and

remains almost from there on. Sa-type galaxies are significantly sub-solar at z & 1.5, while later

types such as Sd even after a Hubble time only reach levels of 1/4 Z�.
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This fact, in combination with observational evidence for a wide range in stellar metallicities

of our and nearby galaxies and the decreasing stellar metallicities in galaxies at higher red-

shifts casts doubt on widespread methods of using only solar-metallicity templates to derive

photometric redshifts from observed spectral energy distributions. We study the impact of the

increasing importance of sub-solar metallicity populations in high-redshift galaxies on photo-

metric redshift determinations using our photometric redshift code GAZELLE on several large

synthetic galaxy catalogs and find a significant bias of ∆z ≈ 0.1 for galaxies at z ≤ 1.2 towards

systematically underestimated photometric redshifts as a consequence of their bluer SEDs.
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6.1 Introduction

As astronomers almost all of the information we currently infer about astronomical objects is

derived from the observed light we receive. Many nearby galaxies are close enough to resolve

them into individual stars that can then be used to derive their evolutionary history (e.g. Grebel,

1997; Harris & Zaritsky, 2001; Aloisi et al., 2007), and this technique can be stretched to some-

what further distances out to ≈ 100 Mpc using star clusters as tracers of their host-galaxy’s

evolution (Puzia et al., 2002; Kissler-Patig et al., 2002; Anders et al., 2004b, 2007; Hempel et al.,

2003, 2007; Larsen et al., 2005, also see Appendix A). However, for more distant galaxies and in

particular galaxies in the distant, early universe we have to rely on studies of their integrated

light, either in the form of spectroscopy and/or photometry. The analysis of these observations is

traditionally done using population synthesis models (e.g., pegase, Fioc & Rocca-Volmerange,

1997; galaxev, Bruzual & Charlot, 2003; galev, Chapter 2) that allow the derivation of stellar

masses, star formation rates and stellar population ages from the observed multi-wavelength

data. All these models have in common that they only use a small number of input parameters

to describe the evolution of the stellar populations in galaxies, but as a consequence only predict

the evolution of an average galaxy.

A complementary approach to studies of galaxy evolution are semi-analytical models (e.g. White

& Frenk, 1991; Kauffmann et al., 1993; Cole et al., 1994, 2000b; Bower et al., 2006; De Lucia &

Blaizot, 2007; Lacey et al., 2008; Fontanot et al., 2009). These models are based on cosmological

dark-matter simulations such as the Millennium simulation (Springel et al., 2005) and hence

allow tracing the evolution of individual model galaxies. The price for this advantage is that

the underlying physics governing their evolution (e.g. star formation and its dependence on the

available gas-reservoir, spectral evolution during starbursts accompanying galaxy mergers) is

included as recipes. The larger number of parameters in these models therefore requires proper

fine-tuning to yield realistic results. Comparison is normally done to luminosity functions of

galaxies in the local universe; it still needs be shown that this detailed reproduction of properties

of the galaxy population still holds for redshifts > 0.

To test these models at higher redshifts requires deep observations that are sufficiently sensitive

to detect the faint galaxies at large redshifts. These deep-fields have become increasingly numer-

ous with more than a dozen fields at the time of writing. They have become increasingly well

studied, both in terms of detection limits and wavelength coverage, since the original Hubble

Deep Field (Williams et al., 1996), but with a large fraction of the detected galaxies too faint to

be studied spectroscopically. The often only reasonable way to extract information about these

galaxies is through photometric redshifts (photo-z), i.e. redshifts derived solely from the ob-

served multi-band photometry. Photo-z, labelled “a poor person’s redshift machine” a quarter

century ago (Koo, 1985), can look back to nearly 50 years of history (Baum, 1962; Puschell et al.,
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1982; Loh & Spillar, 1986; Connolly et al., 1995), and is a widely used and commonly accepted

tool since the late 1990’s, with ≈ 20 different photo-z codes in use (see Hildebrandt et al., 2010

for an overview of the available codes).

Photometric redshifts furthermore are of particular importance for galaxies for which no spec-

troscopic redshift could be obtained, be it because of faintness or because of the absence of

identifiable spectral features. The latter applies to optical spectra of galaxies in the “redshift

desert”, the redshift range between z = 1.4 and z = 2.5 (see Steidel et al., 2004, for an overview),

that are devoid of strong emission- and absorption features in the observed optical range. This

redshift range, however, is of particular importance for studies of galaxy evolution as it coin-

cides with the peak of cosmic star formation activity (Madau et al., 1996, 1998; Blain et al., 1999;

Hartwick, 2004; Juneau et al., 2005; Reddy et al., 2008) and quasar activity (Schmidt et al., 1995;

Pei, 1995; Fan et al., 2001; Babbedge et al., 2006; Brown et al., 2006; Richards et al., 2006), and

hence represents a prime target for a comparison of semi-analytical galaxy evolution models

with observations.

For this purpose we compiled a large catalog of galaxy photometry from a number of publicly

available deep-fields, covering more than four deg2 on the sky and including more than 106

galaxies with photometry in the optical and near-infrared and, for several fields, from the far-

ultraviolet to the mid-infrared. To analyse this catalog in an efficient and consistent manner we

developed the new template-based photometric redshift code gazelle.

The reason for creating a new code instead of relying on one of the public codes, such as HY-

PERZ (Bolzonella et al., 2000), BPZ (Benítez, 2000), ANNz (Collister & Lahav, 2004), ZEBRA

(Feldmann et al., 2006), LePhare (Arnouts et al., 2002; Ilbert et al., 2006), EAZY (Brammer et al.,

2008) to just name the more common ones, are the following:

1) The template set we use is based on galev models. They contain a full suite of emission lines

that are calibrated to closely match observed line-ratios as a function of metallicity and hence

allow for an accurate modelling of actively star forming galaxies, in particular of low-mass and

hence low-metallicity systems. In addition to this line emission we also include continuum emis-

sion, which contributes significantly to the near-infrared luminosity of young stellar populations,

but also affect the UV and blue spectral range in that they alter the strength of the Balmer break,

and consequently impact on the stellar population ages inferred from the strength of this break.

2) Our template set furthermore contains the full spectral and chemical evolution of galaxies

from the onset of star formation in the early universe until the present day. This naturally

accounts for all observed stages of galaxy evolution, from the undisturbed evolution of isolated

galaxies to starbursts and in particular the post-starburst phenomena in galaxies undergoing

interactions with one or more nearby companions. On top of that, isolated galaxies are modelled
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chemically consistently, i.e. fully accounting for the increasing initial abundances of successively

formed stellar generations.

3) To make best use of the wealth of information contained within these models, gazelle not

only derives a photometric redshift for each galaxy, but also a wealth of physical properties such

as masses, star formation rates, galaxy types, stellar population ages, etc. It therefore combines

the functionality of a photo-z code with that of a fully equipped SED fitting code in a self-

consistent way, using identical templates and hence fully accounting for all involved and often

mutually dependent uncertainties.

From these data we also compute stellar mass functions, i.e. the space density of galaxies as

function of their stellar mass, for several redshift slices. Mass functions (also see, e.g., Cole et al.,

2001; Berta et al., 2007; Kajisawa et al., 2009; Drory et al., 2005, 2009) are a valuable tool for galaxy

evolution studies as they enable the simultaneous analysis the evolution of the abundance and

stellar mass of galaxies. This allows us to reconstruct their mass assembly history – either via

intrinsic star formation or by accretion of and merging with other galaxies – and hence offers a

valuable supplement to the study of individual galaxies.

In this chapter we present the algorithm and functionality of our code (Sect. 6.2), the sample

we compiled (Sect. 6.3) and present an overview of the galev template set we use to analyse

our sample (Sect. 6.4). To demonstrate the accurate performance of gazelle we compare the

derived photo-z with spectroscopic redshifts. In Sect. 6.6 we present our results, the redshift

distributions and stellar mass functions, and a detailed comparison with predictions from semi-

analytical models, and conclude with a discussion of our findings in Sect. 6.7.

6.2 The photometric redshift code GAZELLE

To make best use of the wealth of information supplied by our galev models (Anders & Fritze,

2003; Bicker et al., 2004; Chapter 2), we developed a new and innovative photometric redshift

code that we name gazelle. It is described below, and will be made publicly available in the

near future.

6.2.1 The object photometry catalog: Required and optional information

As in most other photometric redshift codes the first processing step is to read the input catalog.

This input catalog contains a) an arbitrary number of columns (the number can be specified

via the configuration file) that allow the identification of each individual galaxy, e.g. catalog
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numbers, coordinates, etc.; b) the galaxy photometry, either as measured fluxes or magnitudes.

Each photometric data-point needs to be followed by its uncertainty, expressed either as flux

error, magnitude error or signal-to-noise ratio.

After reading this input catalog, gazelle compares each input photometry against the detec-

tion limit of the respective filter. Detected magnitudes below the specified detection limit get

flagged as suspicious, and non-detections in one or more filters for an otherwise detected object

are also flagged depending on whether they lie outside the observed field-of-view (usually in-

dicated by a magnitude of −99 mag) or unobserved because they are too faint (magnitudes of

+99 mag). The reason for this flagging is detailed in Sect. 6.2.4. The format of this file hence is

largely compatible with the requirements of other codes to allow for easier inter-comparison of

different codes.

6.2.2 The template set: Galaxy models including spectroscopic and

chemical evolution

As mentioned earlier the major improvement of gazelle compared to all previous photometric

redshift codes is that as comparison templates we use models that include the full spectroscopic

and chemical evolution from the onset of star formation shortly after the Big Bang until the

present day. For this reason it was inefficient to input the full spectra into gazelle and convolve

them with the filter curves on-the-fly. Instead we decided to do this computationally expensive

process beforehand and use spectral energy distributions, i.e. apparent magnitudes in each of

the specified filters that are generated by our galev models, as principal input into gazelle.

These SEDs, one for each redshift (corresponding to the time-steps of our models for a given

choice of cosmological models H0, ΩM, ΩΛ and zform, with zform being the redshift at the onset

of star formation), include both k- and e-corrections as well as the attenuation due to intergalactic

neutral hydrogen clouds as described in detail in Chapter 2. Supplementary input such as dust

extinction for each filter as a function of redshift (the SED-equivalent to extinction curves) as well

as physical parameters (masses, star formation rates, metallicities, etc.) computed by galev are

also read from their individual files and internally merged into a final catalog of template SEDs

and physical parameters.
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6.2.3 The algorithm

The algorithm of gazelle is based upon a slightly modified χ2 minimisation algorithm. For

each (observed SED)-(model SED) combination we derive a χ2 value by

χ2 =
#filters

∑
i=1

[
Fi

obs − α× Fi
model

σi

]2

, (6.1)

where Fi
model and Fi

obs are the fluxes in the i-th filter from the model grid and the observations,

respectively. σi, the uncertainty of this SED point, is given by

σi =
√

σ2
i,obs + σ2

i,model, (6.2)

where σi,obs is the uncertainty of the observation, i.e. photometric errors. The additional term

σi,model represents uncertainties of the models to account for variations among galaxies of iden-

tical spectral types as well as uncertainties propagated from the modelling process, such as

uncertainties in our knowledge of the Initial Mass Function, stellar evolution, incomplete stel-

lar libraries, changes in metallicity due to gas infall or outflows, etc. (see Conroy et al., 2008,

2009, for more details on uncertainties of population synthesis models). We typically assume

a model uncertainty of 0.1 mag independent of wavelength, although a wavelength-dependent

parametrisation is supported by gazelle. The exact value for the model uncertainty is not

crucial in the sense that it does not significantly affect the best-match solution; it does how-

ever influence the confidence ranges, with smaller model uncertainty ranges resulting in more

closely confined solutions. The inclusion of this additional error term was already successfully

implemented by, e.g., Anders et al. (2004a) and Brammer et al. (2008).

One crucial free parameter in eq. 6.1 is the scaling parameter α. This parameter directly influ-

ences the resulting mass and all dependent parameters such as star formation rates of the galaxy

by scaling all luminosities with the same factor to match the average observed luminosity.

Another crucial step on the way to accurate redshifts is the determination of the intrinsic redden-

ing, since this is able to dramatically change both the shape and the normalisation of the SED.

To find the minimum χ2 value for one particular (observed SED)-(model SED) combination as a

function of reddening we implemented a golden section search to sparsely scan the allowed red-

dening range and confine the best solution to within a small range (typically ∆E(B−V) ≤ 0.05

mag) of the optimum. In a last step we fit a parabola to the points near the minimum to obtain

the final, best-match value.

For a typical run, each model in the comparison grid contains ≈ 800 SEDs, covering the redshift

range z = 0− 8 in steps of 0.01. For each galaxy we scan the full grid, i.e. we compute χ2 values

for every SED of every model.
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Once all χ2 values for each possible (observed SED)-(model SED) combination has been com-

puted we derive raw probability densities for each SED by

Praw = exp
(−χ2

2

)
, (6.3)

and, in a next step, normalise all raw probability densities Pj
raw to yield

Pj
norm =

Pj
raw

∑ Pj
raw × ∆zj

(6.4)

with Pnorm fulfilling the condition

∑ Pnorm(z)× ∆z(z) = 1. (6.5)

∆z(z) is the width of the redshift interval corresponding to this SED point. This is necessary as

consequence of a potentially inhomogenous redshift sampling of our model. Optionally we offer

the possibility to first normalise all χ2 to yield χ2
min = 1, in analogy with the approach presented

in Le Borgne & Rocca-Volmerange (2002).

We now sort the resulting array of probabilities by increasing probability densities or equiva-

lently decreasing χ2 values. The model SED with the highest probability density determines

the best-match values for all parameters, i.e. for redshift, extinction, galaxy type, masses, star

formation rate, etc. To derive confidence ranges we progress down this sorted list and integrate

probabilities until 0.68 (in the case of 1 σ uncertainties) have been reached. The confidence range

is determined by the minimum and maximum values for each parameter reached within this

interval. This implies that the extreme values covered by the confidence ranges do not necessar-

ily result from the same point in the model grid. We also point out that we do not make any

assumptions on the distribution of values around the best-match value. This leads to generally

asymmetric confidence intervals that also do not need to be gaussian distributed.

At the moment we treat every model equally, and in particular all starburst models. This sim-

plification might, however, not be the optimal approach, and we will, in a future version, try

to overcome this issue by combining the probability density distribution of each of the models

and only using the maximum probability at each redshift as final distribution. While this leaves

the best-match value for each parameter, and with them all conclusions we draw in this chapter,

unaffected, it could have an impact on the resulting uncertainty ranges.
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6.2.4 Treatment of non-detections

The χ2 algorithm described above is not able to work with non-detections that occur frequently

for a number of reasons, either because

• a) the galaxy intrinsically does not emit flux in the observed wavelength range or all emit-

ted flux is absorbed on the way towards us (e.g. shortwards of the Lyman break);

• b) the survey is not sufficiently deep to observe the faint flux from the galaxy; or

• c) the galaxy happens to lie outside the field-of-view covered by the observations in one

or more of the filters (for instance in the case of a wide-field optical survey that was only

partially followed up in the NIR).

Similar criteria also apply to the models, that can predict the galaxy to be undetected in one or

more bands, for above reasons a) and/or b). Each of these cases contains information by itself

and hence deserves proper inclusion.

In all above cases where either the model and/or the observed data are not detected in one or

more bands, these filters are excluded from the computation of the mass scaling parameter α.

For the following χ2 calculation we implemented the following behaviour:

• Reason a) and/or b) for both model AND data: In case that both observations and model

agree on a non-detection (reason a) or b) apply to both e.g. for dropouts or non-detections

due to too shallow data) this filter is taken as a perfect match and assigned χ2
i = 0.

• Reason a) and/or b) only apply to model OR data: In the case of disagreement, e.g. the

model predicts a magnitude brighter than the detection limit but the observations did

not detect it, or vice versa, the model predicts too faint a magnitude but the object was

detected, gazelle offers two possibilities: The χ2
i value for this filter can be assigned a

fixed value to account for this mismatch or alternatively can be computed by the difference

between magnitude limit and observed (or predicted) magnitude divided by the model

uncertainty.

• Reason c): In the case the object was not detected because it does not fall into the observed

area, this data point is excluded from the χ2 calculation.

This process ensures best use of the available data.

6.2.5 Treatment of bandpasses beyond NIR

While non-detections are more relevant for the shortest wavelength filters there are also poten-

tial problems with bandpasses at long wavelengths. At rest-frame wavelength beyond K-band or
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λ ≈ 2.5µm the spectra of galaxies are increasingly affected by non-stellar emission, most promi-

nently due to dust, which is not yet included in our chosen template set. We therefore exclude

all filters from both the mass determination as well as the χ2 computation for which the central

wavelength, as derived from the filter curve, exceeds a certain maximum rest-frame wavelength

(we chose a conservative value of λmax = 3µm as default value). Observations at longer wave-

lengths, for example from IRAC on board the Spitzer Space Telescope, are hence only used in

the comparison with model SEDs above a certain redshift.

6.2.6 Implementation

The above algorithm is implemented in the software program gazelle. gazelle is pro-

grammed in C/C++ to allow easy modification and adaptations to more specific projects. How-

ever, most parameters that determine the behaviour of the algorithm (e.g. the maximum allowed

wavelength, model uncertainties, etc.) can be configured via a parameter file so that gazelle is

simple to use. For large datasets and/or large model grids gazelle can also be run in a MPI1-

compliant multi-processor environment or even large CPU clusters to decrease the required

wall-clock–time considerably. While gazelle is available on request from the author we also

plan to implement a web-compatible version into the galev webpage (http://www.galev.org)

to enable even easier access to the wider community.

6.2.7 Output of results

Once the algorithm described above has been applied to each SED of the model grid gazelle

is able to derive a wealth of information about the object. The resulting output hence typically

contains

• The best-match photometric redshift including its respective uncertainty ranges, typically

including 68% of the total probability. Other and/or further confidence limits can also be

configured.

• The dust extinction necessary to match the shape of the observed SED, including its uncer-

tainty ranges.

• The galaxy model containing the best-match model SED. From this model we immediately

can infer the most likely past star formation history and, in case the galaxy contained a

starburst or star formation truncation event, the age since this event.

1Message-Passing Interface, see http://www.mcs.anl.gov/research/projects/mpi/ or http://www.mpi-forum.org/
for further details

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mpi-forum.org/
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• The mass scaling factor α. Since our undisturbed galaxy models are calibrated to match

the properties, in particular masses and luminosities, of a typical L? galaxy of their re-

spective spectral types in the local universe we can directly infer the mass relative to the

characteristic mass of galaxies of this type.

• Physical parameters inferred from the above mass scaling factor α in combination with the

galaxy type. These are both stellar and gaseous masses and hence total baryonic masses,

star formation rates and stellar population ages. We furthermore can derive both integrated

stellar and gas-phase metallicities as well as stellar population ages. Since we compute a

complete probability density distribution we also obtain confidence ranges for each one of

the above parameters, fully accounting for redshift, galaxy type, mass and dust reddening

uncertainties.

• Optionally the full probability distribution function (PDF) for each object from the input

catalog to enable follow-up studies. Another optional output is the best-match SED, in-

cluding the effects of mass scaling and dust extinction to allow for easy presentation and

visualisation of the fit. SEDs for any other redshift, galaxy type, dust extinction can easily

be synthesised from the input SED catalog.

This enables us to not only derive the redshift of a galaxy, but also its star formation history,

mass assembly history and chemical enrichment history.

6.2.8 GAZELLE as a SED-fitting code

Based upon the above described functionality gazelle offers several other features more ap-

plicable to studies of galaxies with available spectroscopy and/or known distances. Among

those features is the ability to also include spectral indices, e.g. in the Lick-system (Trager et al.,

1998), in the comparison. The main difference between the treatment of observed magnitudes

and spectral indices is that the latter do not scale with mass, and hence are excluded from the

calculation of α. The second feature is a generalisation of the above approach to enable fitting of

spectra to a grid of galev models.

While the internal working, i.e. the χ2 algorithm, is the same for all operation modes, the treat-

ment of non-detections and the scaling of the input models with the factor α changes from case

to case. A detailed description of each of these analysis modes will be given with the respective

applications to data.
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6.3 The sample

To study the variation of the inferred mass functions on the deep-field at hand we compiled a

large catalog from readily available public catalogs published by the teams of each respective

survey. For each of the fields we used the filter functions for the according telescope and in-

strument in order to avoid additional uncertainties due to colour transformations. Photometric

redshifts as well as physical parameters were then derived individually for each field, so the

accuracy of our photo-z compared to the true (spectroscopic) redshifts also varies from field to

field as consequence of the varying filter coverage. In the following we detail the data we used

for this first analysis. A summary of field sizes, number of spectroscopic redshifts, filter sets

and obtained accuracy can be found in Table 6.1. For more details on data reduction, source

selection, and alike we refer the interested reader to the quoted papers.

In Fig. 6.1 we show the filter sets covered by each of the fields to give an overview of the covered

wavelength basis and sampling of each of the SEDs.

6.3.1 COSMOS

The Cosmic Evolution Survey (COSMOS, Scoville et al. 2007b) covers a 2 deg2 equatorial field

centred on α = 10h00m29s and δ = +02◦12′21′′, and features a very wide wavelength coverage

from X-rays (Brusa et al., 2007; Cappelluti et al., 2007; Finoguenov et al., 2007; Hasinger et al.,

2007), UV (Zamojski et al., 2007), optical both ground-based in broad- and narrow-band filters

(Taniguchi et al., 2007) as well as HST (Koekemoer et al., 2007; Scoville et al., 2007a), near-infrared

(Capak et al., 2007), mid-infrared from Spitzer (Ilbert et al., 2009) to radio (Schinnerer et al., 2004,

2007; Bondi et al., 2008). As such, many spectroscopic redshifts have been obtained by various

groups, e.g Lilly et al. (2007).

Our catalog is based on the latest (Release April 2009) i-band selected UV-optical-NIR catalog2

including photometry in 16 broad- and 12 narrow-band filters. We restricted the catalog to

sources that are also detected in the K-band to ensure the large wavelength coverage necessary

to obtain reliable photo-z (our COSMOS catalog). We also matched the i+K-band selected catalog

with the catalog of [3.6µm] detected sources (yielding our SCOSMOS catalog), so that we have

two slightly different source catalogs for the COSMOS field.

2http://cosmos.astro.caltech.edu/

http://cosmos.astro.caltech.edu/


148 Chap. 6: GAZELLE and its application

0.0
0.2
0.4
0.6
0.8

MUSYC  

0.0
0.2
0.4
0.6
0.8

SCOSMOS  

0.0
0.2
0.4
0.6
0.8

AEGIS/DEEP2  

0.0
0.2
0.4
0.6
0.8

HDF-N  

0.0
0.2
0.4
0.6
0.8

HDF-S  

0.0
0.2
0.4
0.6
0.8

HUDF  

0.0
0.2
0.4
0.6
0.8

FIREWORKS  

0.0
0.2
0.4
0.6
0.8

0.1 1 10

Kitzbichler+06  

re
la

tiv
e 

re
sp

on
se

wavelength [micron]

Figure 6.1: Response curves of the filters
used in each of the survey.

6.3.2 FIREWORKS: GOODS-CDFS

The FIREWORKS-catalog3 (Wuyts et al., 2008) contains K-band selected and aperture-matched

photometry of the GOODS Chandra Deep Field South (CDFS, Giacconi et al. 2000) region and

covers the wavelength range from U through 24µm with in total 18 filters. For reasons out-

lined in Sect. 6.2.5 we do not use the [5.8µm], [8.0µm] and [24µm] filters, though. The catalog

furthermore contains spectroscopic redshifts for 1067 sources (see Wuyts et al., 2008, and refer-

ences therein), allowing for easy comparison of the obtained photo-z, making this catalog very

convenient to use.

3http://www.strw.leidenuniv.nl/fireworks/

http://www.strw.leidenuniv.nl/fireworks/
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6.3.3 MUSYC: CW1255, SDSS1030, EHDFS and ECDFS

The Multi-wavelength Survey of Yale-Chile (MUSYC4) covers a total area of ≈ 1 deg2 spread

out over four fields (Extended Hubble Deep Field South (EHDFS), Extended Chandra Deep

Field South (ECDFS), plus an additional two fields centred on α = 10h30m27s, δ = 05◦24′55′′

[SDSS1030] and α = 12h55m40s, δ = 01◦07′00′′ [CW1255]). For this study we use the K-band

selected deep and wide catalogs presented in Quadri et al. (2007a), Blanc et al. (2008), and Taylor

et al. (2009). The deep versions differ from the wide versions by a K-band detection limit ≈ 1

mag deeper (22.8 vs. 21.7 mag) and the additional availability of J- and H-band photometry in

addition to the UBVRIzK photometry common to all fields.

6.3.4 SXDF/UDS

The Subaru-XMM Deep Field (SXDF5, Sekiguchi & et al. 2004) covers a 1.3 deg2 equatorial field

centred on α = 02h18m00s, δ = −05◦00′00′′ in four optical filters (BRiz) to great depth (Kashikawa

et al., 2004). This field overlaps with the Ultra Deep Survey (UDS) of the UKIRT Infrared Deep

Sky Survey (UKIDSS6, Lawrence et al., 2007), adding deep near infrared data in the J- and K-

bands, and was also covered by the Spitzer Wide-Area Infrared Extragalactic (SWIRE7, Lonsdale

et al. 2003) survey, extending the wavelength range into the mid-infrared. For this study we use

the public catalog presented in Williams et al. (2009).

6.3.5 FIRES: MS1054

The Faint Infra-Red Extragalactic Survey (FIRES8, Franx et al. 2000; Rudnick et al. 2001) covers

the HDF-South and a field centred on the intermediate redshift galaxy cluster MS1054 with

extremely deep NIR J-, H-, and K-band data. The catalog we use here is described in Förster-

Schreiber et al. (2006) and contains the UBVRIJHK filters.

6.3.6 Hubble Deep Fields

The Hubble Deep Field (HDF) North covers the area of one WFPC2 footprint (≈ 6 arcmin2) on

the northern hemisphere, centred on α = 12h36m49s, δ = +62◦12′58′′ (Williams et al., 1996). For

the present study we use the catalog of Fernández-Soto et al. (1999), that supplements the optical

4http://www.astro.yale.edu/MUSYC/
5http://www.naoj.org/Science/SubaruProject/SDS/
6http://www.nottingham.ac.uk/astronomy/UDS
7http://swire.ipac.caltech.edu/swire
8http://www.strw.leidenuniv.nl/~fires/

http://www.astro.yale.edu/MUSYC/
http://www.naoj.org/Science/SubaruProject/SDS/
http://www.nottingham.ac.uk/astronomy/UDS
http://swire.ipac.caltech.edu/swire
http://www.strw.leidenuniv.nl/~fires/
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HST data in UBVI with NIR-data in J, H, and K. The catalog also contains spectroscopic redshifts

from 103 galaxies. The Hubble Ultra Deep Field (HUDF, Beckwith et al. 2003) was taken a few

years later with the Advanced Camera for Surveys (ACS) on-board HST and observed an area of

≈ 11 arcmin of the southern sky in BVRI to even greater depth. In our study we use the catalog

compiled by Coe et al. (2006), also containing J- and H-band data from HST-NICMOS.

6.3.7 AEGIS and DEEP-2

AEGIS, the All-wavelength Extended Groth Strip International Survey, covers an elongated patch

of sky centred on α = 14h17m00s and δ = 52◦30′00′′ with multi-wavelength data spanning the

range from X-ray, UV, optical, near- and mid-infrared to radio (Davis et al., 2007). It was also

covered by the Deep Evolutionary Exploratory 2 Galaxy Redshift Survey (DEEP2; Willmer

et al., 2006), supplying spectroscopic redshifts for a large sample of RAB ≤ 24.1 mag galaxies.

The data we use in this study was compiled from two independent catalogs covering the Optical

ugriz bands observed from CFHT (Davis et al., 2007) and the near-infrared J and K-bands from

Palomar (Bundy et al., 2006). This compilation differs from the previous catalogs in that no PSF-

matching between the different filters could be performed, and we will in the following discuss

the implications of this. For the matching we started with the NIR catalog, and cross-correlated

it with the optical catalog, using a matching radius of 2′′. In the next step we cross-correlated

the NIR+Optical catalog with the DEEP2 redshift survey (using data release 3), again using a

matching radius of 2′′. The final catalog hence contains only such galaxies that are detected in

the NIR and the optical and where a spectroscopic redshifts is available from DEEP2.

6.4 The GALEV model set

For each of the aforementioned fields we used a homogenous set of model templates and, with

exception of field-dependent detection limits, the same gazelle configuration between the

fields to ensure that differences between the individual fields only reflect changes in the data

and not in the configuration.

We use the following template set:

• 5 galaxy types representing the local spectral types E and Sa through Sd, using our chem-

ically consistent (c.c.) models that include a self-consistent treatment of the chemical evo-

lution and fully account for the increasing abundances of successively formed stellar gen-

erations. These c.c. models are closely calibrated to reproduce a wide range of observables

in the local universe as described in Chapter 2 and 5. However, we can not a priori know
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whether the relation between galaxy spectral type and stellar mass holds out to arbitrarily

high redshifts. This could mean that galaxies at higher redshifts are more or less massive

than predicted by our models, leading to different metallicities as a consequence of a mass-

metallicity relation. To account for this uncertainty we also add, for each type, models with

the same SFH, but with metallicities fixed to (0.2, 0.5, 1.0)× Z�.

• A range of starburst and post-starburst models with 16 different burst ages ranging from

0 Gyr (i.e. at the peak of star formation activity) to 10 Gyrs, (i.e. old and red galaxies

as typically found for ellipticals in the local universe). This sequence naturally includes

strong post-starbursts at ages of 0.5 − 1.0 Gyrs when their spectra show strong Balmer

absorption lines typical for k+a type galaxies (Dressler et al., 1999) in the low-redshift

universe (Dressler et al., 1999; Goto, 2004, 2005, 2007; Yang et al., 2004, 2006; Poggianti et al.,

2004; Falkenberg et al., 2009a,b), but that are increasingly found in high-redshift ellipticals

(Butcher & Oemler, 1978, 1984; Couch & Sharples, 1987; Couch et al., 1994; Belloni et al.,

1995; Ellingson et al., 2001; Doherty et al., 2005; Roseboom et al., 2006; Cool et al., 2008).

Again we use 3 metallicities of (0.2, 0.5, 1.0)× Z� for each of these models. Using our c.c.

approach for these models is not appropriate, as these starbursts are likely triggered by

mergers, hence rendering our assumption of closed-box evolution invalid. However, we

are currently working on implementing a multi-zone approach into galev that could lift

this limitation in the near future.

• A sample of stellar spectra from the Lejeune et al. (1997, 1998) library, covering the full

range of effective temperatures from 2000− 50000 K. Adding these templates aims at find-

ing remaining stellar contaminants that were not flagged as such based on morphological

criteria.

For all galaxies we assume star formation to begin at z = 8 and then track the full evolution

from their formation to the present day. We hence naturally include evolutionary corrections,

accounting for the younger ages towards higher redshifts and increasing look-back times. This

naturally ensures that all galaxies are younger than the age of the universe at each redshift. It

also means that the number of available templates changes with redshifts, as, for instance, older

post-burst galaxy templates are restricted to lower redshifts than models of ongoing bursts or

undisturbed galaxies.

Our assumption of a fixed, universal formation redshift for galaxies of all types and across the

mass-spectrum is supported by a wealth of evidence found in both the local and higher redshift

universe, as, e.g., the existence of stars and star clusters as old as the universe in our own Galaxy

(Harris, 1996; Mackey & Gilmore, 2003) and in nearby giant- (Appendix A; Woodley et al., 2010)

and dwarf-galaxies (Grebel, 1997). Based on integrated light we have evidence for an already old

stellar populations in high-redshift galaxies (e.g. Shapley et al., 2001; Cimatti et al., 2002a; Förster-

Schreiber et al., 2004). Furthermore the detection and spectroscopic confirmation of galaxies at
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redshifts z & 7 (Iye et al., 2006) point towards the same redshift range, as does the determination

of the end of the epoch of reionisation via the Gunn-Peterson effect (Gunn & Peterson, 1965)

derived from high-redshift quasar spectra (Fan et al., 2006). Small variations of the exact value of

zform between z = 6− 10 have negligible impact on our results and the conclusions drawn from

them. The reason is that the difference in galaxy ages and hence evolutionary states imposed by

these changes are small.

All models (spectra, apparent magnitudes, k- and e-corrections for all filters of the presented

fields, stellar masses, SFRs, etc as function of time and/or redshift) are freely available from our

web-site www.galev.org. Additional models for different assumptions and/or in different filters

can also be computed via this web-site.

6.4.1 Comparison of predicted colour evolution with observations

The most important factor to derive accurate photo-z from templates is to ensure the models

accurately trace the evolution of the observable SED with redshift. gazelle in this respect

differs from all other photo-z codes currently available (see Hildebrandt et al., 2010, for an

overview and a short description of most other codes) in that it does not limit the template

set to a few templates representing galaxies at different ages and then use the redshift as a

free parameter, but it rather assumes a fixed relation between galaxy age and redshift. Doing

so eliminates one essential free parameter, and in turn imposes stringent requirements on the

underlying star formation history, but at the same time makes the derived SFH more meaningful.

Several codes (e.g. EAZY, Brammer et al. 2008) interpolate between templates to improve the

quality of their photo-z fits, and while these interpolation factors can basically be used to derive

SFHs, smooth SFHs are likely better representations of the true SFH than those consisting of

only a few individual bursts.

In Fig. 6.2 we show observed colours of galaxies in the COSMOS field in a range of filter com-

binations, using both broad- and intermediate-band filters. We overplot a small selection of the

models we use to derive photometric redshifts. All models shown are computed with a fixed

metallicity of 0.5 Z� and, as mentioned above, assume a formation redshift of zf = 8.

Fig. 6.2 clearly shows that our models offer a best-possible match to the observations with-

out requiring any additional free parameters or a-posteriori calibrations (except the zero-point

matching described above). We particularly note the close match to the bumps and wiggles that

are caused by emission lines in the star-forming templates. Without emission lines many of

the features that closely determine the photo-z accuracy, such as the P-Cygni like evolution of

the starburst template in the bottom row panels, can not be explained. This was also found by

Ilbert et al. (2009), who found a significant improvement in photo-z accuracy after inclusion of a

http://www.galev.org
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Figure 6.2: Comparison of the colour evolution with spectroscopic redshift as observed in COSMOS for a range of filter
combinations (observed colours shown with grey dots): Top row: B− r (left), V − K (right); middle row: IB505− IB574,
IB574− IB624; bottom row: I624− r, IB738− IB767. For comparison we show three of the models in our grid, a starburst
at peak SFR (∆t = 0) and two post-starburst models ∆t = 1 Gyr and ∆t = 4 Gyrs after the SFR peak, each using a
metallicity of 0.5 Z�.

limited suite of emission lines into their templates.

6.4.2 Advantages of this model coupling

The intended close coupling between GALEV evolutionary synthesis models on the one hand

and gazelle as photo-z code on the other hand furthermore allows us to extract more infor-

mation out of each SED than “only” a redshift. We already showed that in order to match the

overall normalisation of the SED we need to apply a scaling parameter α (see eq. 6.1). This

factor not only scales the galaxy’s stellar mass as source of the emitted light, but by linking to

the galaxy’s SFH also affects the current SFR, and other mass-dependent parameters. Further-

more from our knowledge of the SFH we can get a handle on mass- and luminosity-weighted

stellar ages. Mass-weighted ages in this context are derived by weighting the age of each stellar

sub-population with its mass, while luminosity-weighted ages are obtained by weighting each

age with its luminosity. As stellar sub-populations of different ages dominate different parts of
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Figure 6.3: Examples for typical probability distribution functions for three galaxies in the COSMOS field. The top
three panels show the probability distribution as function of redshift (top), stellar mass (second row) and star formation
rate (third row); the bottom panel shows the observed (filled red circles) and corresponding best-fit SEDs (blue open
circles, connected by lines). Black upward arrows mark the best-fit parameters (redshift, stellar mass and SFR), the
downwards pointing red arrow in the top panel marks the spectroscopic redshift. The 1-σ confidence ranges are marked
as gray-shaded regions.
The three galaxies are (ID [from zCOSMOS DR2 catalog], RA [deg], DEC [deg]): left: (811415, 150.242065, 1.826618);
middle: (807424, 149.718628, 1.638003); right: (810153, 150.517227, 1.876145).

the emitted spectrum (e.g. young stars dominating the emission in the UV and Blue, while NIR

is dominated by older, evolved and hence cooler giant stars), these light-weighted ages gener-

ally depend on the filter at hand, with longer wavelength bands generally yielding older ages

than bluer bands. Furthermore if we assume that galaxies evolve as closed-boxes as done in this

study9, or alternatively assume some prescription for gas infall and outflow, we can also infer

the currently available gas-mass and the gaseous metallicity. Although this approach introduces

spurious relations merely reflecting the initial assumptions (e.g. a one-to-one relation between

gas-mass and SFR in the case of our Sa-Sc templates) that have to be carefully considered during

the analysis, it still allows us to derive a wealth of physical information from the data at hand in

a self-consistent manner.

Fig. 6.3 exemplifies this approach. Using the probability distribution derived from the SED

fitting, we assign identical probabilities of each (observed SED)-(model SED) combination to each

of the physical parameters of this model point, in this case the stellar mass and SFR. Confidence

ranges for these parameters are then derived simultaneously with the photo-z confidence ranges

by integrating probabilities from highest to lowest probability and deriving the extreme values

9Note, however, that as a consequence of the fraction-of-visible-mass parameter (see Chapter 2 for details) the chemical
evolution, but not the gas fraction, of our models is essentially equivalent to the model of Erb (2008) that assumes
gas infall and outflows to be proportional to the star formation rate.
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reached within the 68% range.

This self-consistent and more realistic approach therefore also accounts for the uncertainties in

the photo-z determination. It leads to generally larger uncertainties for each parameter as com-

pared to the more common, sequential approach of first obtaining a (photometric) redshift, and

then deriving masses and SFRs via SED fits at fixed redshift, which ignores redshift uncertainties

which can be a major source of uncertainty for all other parameters.

Fig. 6.3 also demonstrates three out of the four principally possible shapes of probability dis-

tribution functions (PDFs), two of which lead to a correct photo-z estimate. In each of the

panels, line-colours indicate the galaxy template, with red lines representing our E-type model,

green lines early-type spirals Sa and Sb, dark blue lines late-type spirals Sc and Sd, brown

lines early burst-models with burst ages ≤ 500Myr, turquoise lines intermediate-age bursts with

500 < burst age < 1500 Myrs, and finally violet lines post-starburst models with burst ages

> 1.5 Gyrs. In each sub-panel the upward facing arrow indicates the best-match value; the red,

downward facing arrow in the top P(z) panels marks the spectroscopic redshift. We furthermore

indicate the 1σ confidence intervals with the grey-shaded regions. The bottom sub-panels give

the observed photometric data and their errors with red points; the best-match model SED is

given by blue open circles. Note that the lines connecting the model SED points are only meant

to guide the eye.

The left panel illustrates the ideal case of having only a single template that can reproduce the

observed SED. In essentially all cases this is due to one or more strong features in the SED,

either a strong break (as in the case of dropouts) or, as for this galaxy, strong emission lines that

dominate the flux in at least one filter. These features can only be reproduced over a very narrow

redshift range (typically ∆x ≈ ∆λ/λ of the filter that covers the feature) and hence lead to very

peaked PDFs. We remark that the SFR PDF splits up into three components that coincide in their

redshift- and stellar mass PDFs. These represent three young bursts at different stages or burst

ages, that despite their different physical parameters show indistinguishable SEDs.

The middle column of Fig. 6.3 shows a more typical case where no sharp features are detected

and the photo-z determination is dominated by a fit to the continuum. This also allows for dust

extinction to come into play as an additional degree of freedom . Dust reddening affects the

spectral slope globally, but does not affect the shape and/or position of spectral lines or breaks,

so we naturally expect and indeed observe a much wider PDF in these cases. The stellar mass

PDF is not symmetric around the best-match value, but rather skewed due to the width of the

photo-z distribution.

The right column in Fig. 6.3 is characteristic of a case where the PDF has more than one peak.

Reasons for this can be found in degeneracies due to large photometric errors and/or insufficient
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sampling of the SED, e.g. too few filters not allowing to discriminate effects of stellar population

age and dust reddening or confusing the Balmer and Lyman breaks due to lacking or too shallow

a UV coverage. In most of these cases the PDF still shows a local but no global probability

maximum at the correct redshift. If both peaks are close in redshift space this effect is likely

to average out for larger samples, as the scatter of best-match values from the correct into the

wrong peak is proportional to their relative amplitudes. For larger differences (e.g. as in the

case of confused Balmer and Lyman-breaks) the effects are more severe, because nearby, low-

mass galaxies that get interpreted as high-redshift galaxies are more numerous than massive

galaxies at high-redshift. However, in most of these cases the resulting photo-z’s are assigned

very large uncertainties as a result of this degeneracy and can therefore easily be excluded from

any subsequent analysis.

The fourth case, not shown here, are “catastrophic failures” where the spectroscopic redshift

does not correspond to even local maxima and lies outside the confidence ranges. This can hap-

pen, e.g, for strong AGNs or typically late-type stars that are not represented by the template

grid. The latter in particular can potentially be excluded if high-resolution imaging, e.g. from

HST or ground-based imaging using adaptive optics, is available, e.g. using the Stellarity param-

eter from SExtractor (Bertin & Arnouts, 1996) or by comparing the FWHM to that of bona-fide

points sources. However, doing so from ground-based observations alone with typical seeing of

. 1 arcsec is less straightforward, explaining the significant fraction of objects falling into this

category.

Another source of discordant photo-z’s are wrong spectroscopic redshifts. Fernández-Soto et al.

(2001) compared spectroscopic and photometric redshifts for a sample of 140 galaxies in the

HDF-N. They find that for 5 out of 9 discordant redshifts the spectroscopic redshift is at fault,

while only in 1/9 the photo-z is incorrect. This fraction is particularly troublesome for training

set-based photo-z techniques such as ANNz (Collister & Lahav, 2004).

6.5 Performance evaluation

To test the accuracy and reliability of our code we applied gazelle to a range of different

surveys with available spectroscopic redshifts. The fields under investigation are the original

Hubble Deep Fields North (HDF-N, Fernández-Soto et al., 1999) and South (HDF-S, Labbé et al.,

2003), the Hubble Ultra Deep Field (HUDF, Coe et al., 2006), the Chandra Deep Field South (CDF-

S, using the FIREWORKS catalog by Wuyts et al., 2008) and the AEGIS fields (All-wavelength

Extended Groth Strip International Survey, data from Bundy et al., 2006; Davis et al., 2007). The

wavelength coverage of each of these fields is summarised in Table 6.1.

For each of these fields we first ran a calibration run, in which the redshift of all templates is fixed
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Table 6.1: Surveys in comparison

Survey / Field
wavelength

# filters N(zspec)
〈

∆z
1+zspec

〉
σz # outliers1

coverage

HUDF B− J 6 86 -0.013 0.108 30

HDF-N U − K 7 103 -0.027 0.056 17

HDF-S U − K 7 49 -0.021 0.059 7

AEGIS/DEEP u− K 7 5026 -0.037 0.067 1285

FIREWORKS U − [8.0µm] 16 582 -0.057 0.062 117

SCOSMOS FUV− [8.0µm] 28 2 2375 -0.003 0.017 148

combined · · · · · · 8221 -0.018 0.052 1604

Kitzbichler+06 B− K 5 112k -0.013 0.054 14345

1 defined as having ∆z ≡ |zspec − zphot| > 0.1× (1 + z)
2 16 broad-band filters (FUV− [8.0µm]) and 12 optical intermediate-band filters

to the spectroscopic redshift of each object. This allows us to derive empirical zero-point offsets

that need to be applied to the data to minimise systematic offsets between the photometric and

spectroscopic redshifts. Possible reasons for these zero-point shifts are imperfect calibration of

the data with respect to the quoted magnitude system. This is the case, e.g., for the SDSS u- and

z-filters, (Doi et al., 2010). The magnitude of this effect, exceeding 0.2 mag in some cases, was

demonstrated in Taylor et al. (2009), comparing “well calibrated” data in the ECDFS from the

MUSYC and Combo-17 (Wolf et al., 2008) survey. On the modeling side small changes to the

filter response curves as a consequence of different airmasses or insufficient knowledge of the

response of telescope mirrors and/or detectors as a function of both time and wavelength can

also lead to minor offsets. However, the required offsets are typically small (. 0.05 mag) and

well within the assumed uncertainties of our models of 0.1 mag.

We note that this calibration is only possible for fields that have some spectroscopic coverage,

which does not apply to all fields in our sample. For those fields without spectroscopy we take

the calibrated photometry at face value; small, uncorrected offsets could then lead to pile-ups

at certain photometric redshifts (the position of which depends on the magnitude of the offset

and the affected filter(s)), that also show up as “chimneys” in the resulting redshift distribution.

We also note that this offset issue mostly affects ground-based photometry, whereas photometry

obtained from HST data generally shows no or only minimal offsets.

The resulting one-to-one comparison is shown in the left panel of Fig. 6.4 and also summarised

in Table 6.1. We generally find a good agreement between the spectroscopic and our derived

photometric redshifts. Two notable cases are SCOSMOS and AEGIS/DEEP-2. SCOSMOS shows
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Figure 6.4: Comparison of spectroscopic and photometric redshifts.

Left panel: Direct comparison of zphot and zspec for the surveys with available spectroscopic data. The mean deviation
〈zspec − zphot/(1 + zspec)〉 = −0.02, the scatter is 0.05 (see Table 6.1).

Right panel: Histogram of the deviation

by far the best performance, which we attribute not only to the large number of filters that

finely sample the SED in much the same way as a low-resolution spectrum does, but also to

its large wavelength coverage from FUV (0.15µm) to Mid-Infrared at 8.0µm (note, however, that

in particular the [5.8µm] and [8.0µm] bands are mostly excluded from the fitting due to the

low redshifts of the spectroscopic sample). This greatly helps to constrain dust extinctions,

alleviating degeneracies of dust extinction, stellar population age and redshift. On the other end

of the spectrum is our AEGIS/DEEP-2 sample, showing a relatively large number of objects with

large deviations from the ideal case. We attribute this to the way the photometric sample was

assembled, as described earlier in Sect. 6.3.7.

The right panel of Fig. 6.4 shows the distribution of photometric redshift offsets σz = (zphot −
zspec)/(zspec + 1) for all six fields. All fields show a minor bias of σz,median ≈ −0.02 to-

wards slightly underestimated photo-z as compared to the true spectroscopic redshift. This

bias however does not significantly impact on the derived physical parameters, in particular

at z > 0.5; small deviations in redshift do not change the overall evolutionary state of the

galaxy, and the resulting error in the distance modulus (δ(m − M)/δz ≈ 4.6 × (1 + z)2, or,

equivalently, ∆(m − M) = 4.6× σz; for a σz = 0.05 at z = 1.5, ∆(m − M) = 0.23, or ≈ 20%)
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Figure 6.5: Cumulative distribution
of ∆z/δz (with ∆z = |zspec − zphot|;
δz = (zphot,+σ − zphot) for zspec > zphot and
δz = (zphot − zphot,−σ) for zspec < zphot;
zphot,+σ and zphot,−σ are the upper and
lower 1σ extremities, respectively) for
all galaxies in our sample with available
spectroscopic redshift. For comparison we
show the expected distribution in case of
gaussian errors.
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which affects masses and mass-dependent parameters is small compared to the uncertainties

from different model types, i.e. star formation histories (also see Fig. 6.3). The dispersion of

σz ≈ 0.05 is comparable to other state-of-the-art photo-z codes on the same and/or similar

datasets (Hildebrandt et al., 2010). In Table 6.1 we also give the number of outliers, defined as

having ∆z ≡ |zspec − zphot| > 0.1× (1 + z). We note, however, that the large fractions (≈ 20%)

we find do not account for galaxies with large photometric redshift uncertainties, so the true number

of outliers with redshift deviations of more than 3σ is significantly lower (see Fig. 6.5 and the

discussion in Sect. 6.5.1).

6.5.1 Distribution of photometric redshift errors

One important factor during the derivation of photo-z’s is to determine how robust that redshift

estimate is, or what its confidence ranges are. As mentioned earlier (Sect. 6.2.3) gazelle de-

rives confidence ranges directly from the probability distribution; potential multiple probability

maxima are accounted for by expanding the uncertainty ranges to include the extreme values

encountered while integrating the probability density distribution.

In Fig. 6.5 we show the cumulative distribution of relative errors ∆z/δz (with ∆z = |zspec− zphot|;
δz = (zphot,+σ − zphot) for zspec > zphot and δz = (zphot − zphot,−σ for zspec < zphot; zphot,+σ

and zphot,−σ are the upper and lower 1σ extremities, respectively), derived from all galaxies with

available spectroscopic redshifts. When compared to the theoretical expectations we find that for

most fields the curves lie left of the gaussian distribution (shown as a thicker grey line), meaning

that for these we generally overestimate the uncertainties and photo-z’s are more accurate than

could be expected from the error bars. This is most likely due to PDFs with multiple peaks, in

particular in cases where distinguishing between the Balmer- and Lyman-break is difficult based
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on the available photometry. Another contributor are degeneracies intrinsic to the template set

and parameter space; for instance, galaxy age, redshift and dust reddening to first order have

similar impacts on the observed SEDs. Only in the case of the HUDF are errors underestimated,

feigning overly accurate results. However, this field also has the lowest number of spectroscopic

redshifts and is selected differently from all other fields, and so our result for this particular field

has lower statistical significance.

We also note that at large deviations our estimated errors drop below the gaussian distribution.

This originates from the fraction of “catastrophic failures” or outliers from the photo-z vs. spec-

z identity. For these cases the quoted error bars are often significantly underestimated. We

recall that, as shown by Fernández-Soto et al. (2001) the spectroscopic redshifts as well as the

photometric ones might be in error.

6.5.2 Systematic uncertainties in stellar mass and star formation rate due

to simplified SFHs

As gazelle simultaneously serves as a SED fitting code to derive physical parameters, we need

to make sure that our assumption of smoothly varying star formation histories is capable of deal-

ing with the often complex star formation histories observed in detailed studies of individual

galaxies. For this purpose we chose a large sample of galaxies from semi-analytical models.

These galaxies have more realistic SFHs derived from the Millennium simulation (Springel et al.,

2005), but, owing to their model nature, well known parameters, making them better suitable

than real galaxies for this comparison. We use a sample of galaxies from the De Lucia & Blaizot

(2007) and Bower et al. (2006) models. For all cases we correct the stellar masses and star forma-

tion rates for differences in the IMFs, following the prescription in the respective papers. We use

the simulated photometry and apply the photo-z and SED fitting using identical parameters as

in the real analysis of the deep-fields.

The comparison with the models from De Lucia & Blaizot (2007) is shown in Fig. 6.6. The redshift

for the four runs, i.e. z = (0.36, 0.76, 1.50, 3.06), have been chosen to match the central redshifts

for the redshift bins of the subsequent analysis as closely as possible, in order not to introduce

new uncertainties. We chose the photometry in the SDSS ugriz and 2MASS JHK filters, as these

filters more closely represent current observations than the Buser B,V and Johnson R,I,K filters.

We find that, for galaxies more massive than 109M�, stellar masses can be reproduced with a

typical 1σ scatter of 0.07 dex; 99.9 per cent of all galaxies have stellar masses within ≈ 0.2 dex

(with lower values towards higher redshifts) of the true model mass. Star formation rates for

the Mstellar > 109M� selected sample are typically good to 0.5 dex (1σ) but show large scatter,

mostly due to a low SFR that has little effect on the SED. Restricting the sample to galaxies with
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Figure 6.6: Comparison of stellar masses (left panels) and star formation rates (right panels) taken from a semi-analytical
galaxy formation model (De Lucia & Blaizot, 2007) based on the Millennium simulation with the parameters obtained
by fitting the synthetic rest-frame SEDs to a set of GALEV models using gazelle. All data were corrected to use the
same cosmology and a Salpeter IMF. Data points are shown with blue dots, perfect one-to-one agreement is shown by
the solid line, and dashed lines mark 0.3 dex offsets to either side.

SFR ≥ 1 M� yr−1 significantly improves this situation, the scatter reducing to 0.18 dex (1σ), and

> 0.999 of all galaxies agreeing to better then 0.5 dex. We also note that the SFR in the models

refer to current SFRs, so variations on a short timescale do not affect the overall SED, leading to

an increased scatter. While this, at first glance, seems to restrict the reliability of our approach the

actual impact on true observations is minor, as the log-log representation in Fig. 6.6 distorts the

true uncertainties, which are typically smaller than 0.1M� yr−1 for SFR < 1M� yr−1, and hence

insignificant for more massive galaxies. Moreover, Fig. 6.6 shows the full sample of simulated

galaxies, and hence contains numerous galaxies that are too faint to be detected with modern

surveys, eliminating essentially all low-mass galaxies for which SFR uncertainties of 0.1M� yr−1

would be significant.

The results using the models of Bower et al. (2006) and our fits to the UBRIJHK photometry

are shown in Fig. 6.7. These models do not give star formation rates, so we have to restrict the

comparison to stellar masses. The scatter here amounts to ≈ 0.1 dex. In all cases essentially

all (99.9%) galaxies have photometric stellar masses within 0.25 dex of the true value. Small

systematic offsets of up to 0.1 dex can easily be explained by variations of the IMF correction

factor with stellar population age.

While these results are already more than encouraging, so far we could only fit rest-frame pho-

tometry for which we had to restrict the redshift range to match the models. This prevented

us from determining the true accuracy with redshift as additional free parameter. To overcome

this we also applied gazelle to synthetic light-cones from Kitzbichler & White (2007). These

light-cones are also based on the Millennium simulation, but account for redshift by using appro-

priately shifted BVRIK filters. The results derived from these relatively sparse SEDs are shown
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Figure 6.7: Comparison of stellar masses
taken from the semi-analytical galaxy
formation model of Bower et al. (2006)
with the parameters obtained by fitting
the synthetic rest-frame SEDs to a set
of GALEV models using gazelle.
Method and other details as in Fig. 6.6.
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Figure 6.8: Comparison of redshifts and
physical parameters obtained from fitting
the simulated photometry with the true
values as given by the semi-analytical mod-
els by Kitzbichler & White (2007).

Top left: true and photometric redshifts;

bottom left: stellar masses;

top right: star formation rates;

bottom right: specific star formation rates
(= SFR/Mstellar).

The solid black line shows the identity
between true and photometric values;
dotted lines mark confidence ranges of
±0.1(1 + zspec) and 0.3 dex (Mstellar, SFR,
and sSFR).

in Fig. 6.8.

We generally find very good agreement between the true values and those derived from the

galaxy SEDs.

One limitation of this comparison with simulated SEDs from semi-analytical models is, that both

these and our galev models are based on similar input physics – both are based on theoretical
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stellar evolution data. The presented comparison hence reflects a somewhat idealised case.

To improve on this we plan to perform a more detailed comparison of our spectra, obtained

by fitting our galev models to the observed photometry, to actual observed spectra, paying

particular attention to the strength of absorption- as well as emission-lines. This comparison,

however, will be limited to relatively low redshifts to ensure a sufficiently high signal-to-noise

ratio and hence a good enough quality of the spectra, but will nevertheless show us how detailed

a match we can obtain from only a few (photometric) data points.

6.6 First results: Redshift distributions and stellar mass

functions

6.6.1 Redshift distribution

The first step in our comparison of the individual fields is the distribution of the derived pho-

tometric redshifts. To make the samples comparable for all subsequent analyses, we select a

K-band bright sample of mK < 22 mag galaxies. This brightness is reached in all samples except

the HUDF that only extends to the H-band. Furthermore the HUDF catalog combines galaxies

in any of the BViz frames (Coe et al., 2006) and hence should be considered carefully. Also note

that the COSMOS field is actually based on a combined i-band and K-band selection. However,

the i-band selection reaches significantly deeper than the K-band (26.1 vs 23.8 mag at 10σ, Capak

et al. (2008, in preparation), also see Ilbert et al. 2009), which in turn is nearly 2 mag deeper than

our conservative limit and hence will not likely affect the following results except in the case of

extremely red (i− K > 4) objects.

Fig. 6.9 shows the resulting redshift distribution for all fields, normalised by the area of each

field (top panel) and the total number of galaxies of each respective field (bottom panel).

As can be seen from this figure, the photo-z distributions of most fields roughly agree in that

they show a rise at low redshifts to a maximum at z ≈ 0.5, and a sharp decline towards higher

redshifts. This agrees well with results from other groups for the same fields (e.g. Grazian

et al., 2006; Ilbert et al., 2009), re-emphasising that both the code and our underlying model

grid compare well with other solutions currently available, but with the added benefit of our

approach to intimately couple physical parameters to our models. A striking feature of both

number- and area-normalised plots is the large scatter between the fields. Despite our restriction

to a homogeneous mK < 22 mag selected sample, we still find differences of a factor of three near

the peak of the distribution at z ≈ 0.5− 0.8. This discrepancy between the individual fields grows

larger still with increasing redshift, but with reduced statistical significance due to the smaller
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Figure 6.9: Projected density of galaxies
per unit redshift, normalised by the area
of each field in arcmin2 (top panel) and
by total number of galaxies in each field
(bottom panel) as a function of redshift.
The thick grey line marks the average of
all fields (using the wide fields where both
wide and deep are available);

number of detected galaxies at these redshifts. Possible reasons for this effect are 1) differences

in the selection of the sample and incompleteness effects; 2) different reduction steps from the

original data to the actual catalogs, including calibration uncertainties; 3) photometric redshift

errors that scatter galaxies between the individual redshift bins; 4) real physical differences in

the high-redshift galaxy populations at higher redshifts.

The first explanation is largely ruled out by our restriction to a well defined sample as outlined

above. In particular the chosen magnitude limit is significantly brighter than the quoted incom-

pleteness limits of the individual fields (see, e.g., Quadri et al. 2007a for the MUSYC fields).

Furthermore the reduction steps that lead to these catalogs largely – i.e. not considering certain

steps necessary to account for the different instrument characteristics – follow widely-accepted

standard reduction procedures, so that also the second point seems unlikely to cause the large

observed discrepancies.

The third source of photometric redshift uncertainties shuffling galaxies among the bins can be
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Figure 6.10: Redshift distribution for each
individual sample, normalised by the are
of each field. Poisson errors have been
plotted for each individual field, but are
too small in the case of SCOSMOS, ECDFS
and SXDF+UDS to be recognisable.
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addressed by comparing two nearly identical fields. For this purpose we chose the MUSYC

CW1255, SDSS1030, and EHDFS fields, as they were all published by Quadri et al. (2007a), are

based on data from the same instrument, and have photometry of equal quality in identical

filters, and hence should be affected by photo-z scatter in very much the same way. However,

even among these fields we still find significant (3− 5σ) differences at redshifts z = 0.8 to z = 2.5.

At higher redshifts z ≥ 2.5 the redshift distributions from the wide catalogs agree well, while the

deep catalogs still show some differences, but due to the small number of galaxies the statistical

significance of this finding is questionable.

We will discuss the evidence for the fourth point below in the light of mass functions derived

from the data for each of the fields.

Another interesting feature in several fields (CW1255 D/W, SDSS1030 W) is a deviation at z ≈ 1

to z ≈ 2 in the decrease rate towards higher redshifts, ie the fact that we are seeing relatively

fewer galaxies at z = 1− 1.5 and relatively more galaxies at z = 1.5− 2 than expected from a

linear interpolation between z = 1 and z = 2. This can be more clearly seen in Fig. 6.10 where

we show the area-normalised redshift distributions of all individual fields.

To test whether this is indeed a real feature or an artefact of our photo-z determination we cre-

ated a large mock-catalog of simulated observations for each of our input templates. For each

we started from our model SED, sampling the input redshift range z = 0.2− 4 in steps of 0.01,

added dust extinction with E(B−V) = 0− 0.4 mag drawn from a flat distribution, varied the

stellar mass – and with it the overall normalisation of the SED – to represent a Schechter-function
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Figure 6.11: Results from our Monte-Carlo runs trying to explain the relative absence of galaxies in the redshift range
z = 1.5− 2 for six representative galaxy types (star formation histories) from our model grid. The top panels show,
for each type, the input (blue circles) and the resulting redshift distribution after the photo-z fitting to the simulated
photometry (red triangles). In the bottom panels we show the ratio between the number of galaxies in the output bin
relative to the number of galaxies in the input catalog as a function of redshift. Error bars assume poissonian noise.

with faint-end slope α = −1.0 and a typical mass of M? = 3× 1011M�. Finally we added pho-

tometric noise, drawn from a gaussian distribution with zero mean and a standard deviation

that depends on the filter and the apparent magnitude (see Chapter 5 for a more detailed de-

scription). We used the same filter set and detection limits as in the MUSYC-ECDFS field. These

catalogs were then used as input catalog for gazelle and we determined photometric redshifts

and physical parameters in a manner identical to what we used for the real data. The very last

step then culled only those galaxies that fulfil the mK < 22 mag criterion to make the simulation

comparable to the above findings. In Fig. 6.11 we show the comparison between the true, input

redshift distribution and the retrieved, photo-z distribution.

We find that in the redshift range of interest, z = 1− 2, we do not find any significant evidence

for the relative depression in the number of z = 1− 1.5 galaxies. Only in the case of our late

post-starburst do we see a broad dip in the distribution extending from z = 1 to z = 2. At these

redshifts passive galaxies with low rest-frame UV luminosities become very faint in the optical

bands, leading to larger photometric uncertainties and hence a greater chance for increased

photo-z scatter, which in turn redistributes some fraction of the simulated galaxy population

to higher redshifts. However, we do not find an increased number of z = 1.5− 2 galaxies at
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the expense of the number of galaxies at z = 1.1.5 that could explain the observed effect. We

therefore conclude that our observation of relative fewer galaxies at z = 1− 1.5 is indeed a true

effect and no method-introduced artefact.

One possible explanation are evolutionary corrections boosting the observed K-band magnitudes

of z ≈ 2 galaxies by ≈ 0.2 mag with some variation between the different galaxy types. This

redshift range overlaps with the cosmic peak of star formation activity, during which the galaxy

population is likely to be dominated by actively star forming galaxies. The resulting line emis-

sion, in particular in Hα that falls into the observed K-band for galaxies at z = 2− 2.5, typically

increase the observed brightness by 0.2 mag. This offset, although seemingly small, allows the

detection of galaxies 20% less massive, and as a consequence of the steep mass function (e.g.

Reddy & Steidel, 2009) rapidly increases the number of galaxies that are within reach of mod-

ern observations. A more detailed analysis of the redshift distribution for galaxies of different

K-band luminosities and/or different intrinsic colours will allow us to test and possibly refine

this interpretation in the near future. We expect a larger z = 2 “bump” for blue galaxies than for

the overall population. The prominence of the feature should increase towards fainter magni-

tudes as emission lines contribute relatively more flux to broad-band magnitudes for lower-mass

galaxies as a consequence of their – on average – higher specific star formation rates and lower

metallicities.

6.6.2 Comparison with simulated light cones

Having obtained all these redshift distributions the next step is to compare them with predic-

tions from cosmological simulations. For that purpose we use the artificial light-cones from

Kitzbichler & White (2007) that are based on the Millennium simulation. Each of these light-

cones covers a simulated region of 2 deg2, hence they are well matched to the area covered by

our combined sample. To make the comparison as realistic as possible, we use the simulated

photometry from these light-cones and process them in the same way as we did with the real

observations. We furthermore added different levels of sophistication to check how well we are

able to reproduce the underlying distribution. In a first step we use the dust-free photometry,

eliminating dust extinction as a free parameter in our analysis. The second step was using the

photometry including intrinsic dust reddening, and also allowing for reddening in the analysis.

Both these steps directly operated on the ideal photometry, and hence did not account for pho-

tometric scatter as major source of uncertainty. We remedy this in a second set of simulations

where we add photometric scatter to each of the SED points. The amount of scatter was drawn

from a gaussian distribution with zero mean and standard deviation ∆m, which depends on the
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apparent magnitude and the filter:

∆m(m) = 0.03 + 3.75× exp (0.75× (m−mlimit)) . (6.6)

mlimit was chosen such to reproduce 5σ detections (∆m = 0.2 mag) for an (B, V, R, I, K) magni-

tude of (26.5, 26.5, 26, 24.5, 22.5) mag.

The results for these different runs are shown in Fig. 6.12. Overall we find good agreement be-

tween the underlying, true redshift distribution and the composite distribution compiled from

our sample. Only towards higher redshifts do both distributions start to separate, with more ob-

served galaxies at high redshift than expected from the simulations. However, this disagreement

is resolved when we account for all involved observational effects, in particular dust extinction

and photometric noise. Dusty galaxies are fainter than their less dusty counterparts, leading to

larger photometric uncertainties and hence to a greater chance of being associated with an incor-

rect redshift, leading to comparably low-redshift galaxies being scattered up to higher redshift.

We therefore conclude that our derived redshift distribution agrees with what we find for the

simulated light-cones. The next step is to ensure that we also reproduce the mix of galaxy types,

and the distribution of stellar masses, star formation rates, dust extinctions etc. We will address

stellar mass functions below, but leave a discussion of the other factors for a forthcoming paper.

6.6.3 Stellar mass functions

In a next step we compare the galactic stellar mass functions for each of the fields to search for

mass-dependent differences between the individual fields. This is done in four redshift intervals

(0.2, 0.5), (0.5, 1.0), (1.0, 2.0), and (2.0, 4.0), each covering a time-span of ≈ 2 Gyrs in our chosen
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Figure 6.13: Mass functions for each of the fields in four different redshift bins (0.2, 0.5), (0.5, 1.0), (1.0, 2.0), and (2.0, 4.0).
Points represent the actual data, while lines represent the best-fit Schechter functions. The grey-shaded regions mark
the regions where incompleteness affects a) passive and predominantly old galaxies at the upper end of the redshift bin
(light grey) and b) actively star-forming galaxies at the lower end of the redshift range (darker grey), both assuming
no dust extinctions. Symbols in the lower panels are identical with those in the upper panels, but omitted to improve
clarity. Small black error bars near the bottom of each panel indicate the additional uncertainty for each data-point as a
result of cosmic variance, assuming a rectangular field size of 10× 10 arcmin, and using the recipe of Moster et al. (2010).

cosmology, and avoiding both the redshift extremes at very low and very high redshifts where

even small redshift uncertainties have significant effects, or source densities are low, respectively.

Stellar masses for each of the galaxies are taken to be the best-match values. To account for

incompleteness at low stellar masses we used the V/Vmax technique (Schmidt, 1968) and com-

puted, for each galaxy, its space density in the volume over which the galaxy fulfils the detection-

and selection criteria for our sample. To derive this maximum volume we derived the maximum

redshift out to which the best-match galaxy model would be observable. This ensures that we

fully and consistently account not only for the changing luminosity distance, but also for k- and

e-correction, i.e. changes to the observed magnitude due to a shift in filter position relative to

the rest-frame spectrum and due to the younger galaxy age towards higher redshifts. We then

fitted each mass function with a Schechter profile (Schechter, 1976). The results are shown in

Fig. 6.13.

For each field we show the derived mass-function as data points with error bars (assuming

Poisson noise) and our fitted Schechter profile as line. The two different gray-scale regions

indicate two extreme mass completeness limits for an old, passively evolving galaxy at the upper

end of the redshift range in light grey and a starbursting galaxy at the lower end of the redshift
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range in darker grey. For both models we do not assume any dust extinction. For the old galaxy

with little to no ongoing SF we do not expect significant amounts of dust in agreement with

spectroscopic observations (Kriek et al., 2006, 2009). For the starburst on the other hand, the case

without dust represents the extremely blue case, as in a more general case the addition of dust

would shift the mass completeness limit to higher masses.

Comparing the mass-functions we generally find good agreement between the individual fields

for masses M . 5× 1011M� only. At low redshift (z = 0.2− 0.5) we find a small offset between

the SCOSMOS, ECDFS and SXDF fields as compared to the remaining fields. The reason for

this is that these fields were particularly chosen to be devoid of bright and hence mostly nearby

sources, leading to a lower source density in our lowest redshift bin. All higher redshift bins, in

which galaxies are generally faint and would not interfere with this field selection criterion, do

not show the same offset, hence strengthening our interpretation.

6.6.4 Massive galaxies: Evidence for ongoing cluster formation?

The population of the highest-mass galaxies with Mstellar ≥ 3× 1011M� gets more prominent

from z = 0.2− 0.5 to z = 0.5− 1.0, while quickly decreasing towards higher redshifts z > 1.0.

A closer look at the galaxy types these galaxies were fitted with reveals that in the case of the

641 galaxies of the ECDFS field that fall into this mass range, 70/641 (11%) are best described

by our Sa-Sd templates, while only 8/641 (1.2%) are best matched with starbursts and young

post-starbursts less than 1 Gyr after the peak of the burst. All remaining galaxies or > 87% of

this high-mass population are assigned either our Elliptical models or post-starburst templates,

and this fraction rises to 100% at even higher masses of Mstellar > 1012M�. As most of these

galaxies in the local universe are found in dense environments such as galaxy clusters, we take

this as strong evidence that with these galaxies we observe the formation of the galaxy cluster

population. This agrees with spectroscopic investigations by Andreon (2006) and De Lucia et al.

(2009) finding well established red-sequences in several high-redshift clusters at z = 0.4− 0.8. In

our next higher redshift bin z = 1.0− 2.0 this population is lower in number by nearly two orders

of magnitude, in fair agreement with spectroscopic results from Arnouts et al. (2007) who also

find a major build-up of the quiescent galaxy population from z = 2 to z = 1.2. Also the galaxy

population mix has changed, with the number of galaxies best fit by our spiral or starburst

models increasing to 61/524 (12%), and ongoing starbursts to 47/524 (9%). Furthermore, if we

also consider our E-type model at redshifts z > 1 as star-forming (the specific SFR at z = 1 is

10−11yr−1, resulting in a SFR> 3M� yr−1 at these masses and increasing to SFR& 30M�yr−1 at

z = 2) this would add another 176/524 (34%) galaxies to this category. Passive post-starburst

galaxies account for 233/524 galaxies (44%) at Mstellar > 3× 1011M� and for 15/29 (51%) of

the most massive (Mstellar > 1012M�) galaxies. Comparing the two redshift intervals we find
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a significant increase in the fraction of star-forming, yet massive galaxies from 13% at z =

0.5− 1.0 to 21% and possibly up to 55% at z = 1.0− 2.0. This fits in nicely with the concept of

“downsizing” (Cowie et al., 1996), where more massive galaxies form the bulk of their stellar

mass early on, while lower-mass galaxies form their stars over a more extended period of time.

A closer look at the distribution of galaxy types reveals, that the number of the oldest galaxies

as determined by the post-starburst ages increases towards lower redshifts, while the number

of galaxies with intermediate post-starburst ages remains roughly constant. This supports the

scenario that massive and passive galaxies predominantly grow by dry-mergers, as wet mergers,

i.e. the merging or accretion of gas-rich galaxies, would likely trigger a starburst that in turn

would decrease the stellar population age, in agreement with conclusions by Bell et al. (2004)

and Faber et al. (2007).

At the same time, the small fraction of very massive galaxies that are best-matched with a

starburst template, indicating intrinsically blue colours, does not rule out the scenario where

even very massive ellipticals can be formed in wet mergers, possibly involving more than two

galaxies or a compact group of galaxies (e.g. Barnes, 1989; Schweizer, 1989; Jones et al., 2000;

Borne et al., 2000; Amram et al., 2004; Falkenberg et al., 2009b), or alternatively an already

massive elliptical accreting a massive gas-rich companion (see, e.g., Iglesias-Páramo & Vílchez,

1997, 1998; McIntosh et al., 2008). These mergers, in combination with the high metallicities of

their high-mass progenitors, trigger violent and heavily dust-obscured starbursts and are hence

observable as ULIRGS (Borne et al., 2000). The resulting red colours, in combination with weak

tidal features as a result of the destructive group environment (Mendes de Oliveira et al., 1998)

and small angular extent of the whole multi-galaxy system as compared to individual galaxies

(Borne et al., 2000; Iglesias-Páramo & Vílchez, 1997), readily explain why these kind of objects are

easy to miss in typical searches for these objects that target pairs of red and blue galaxies or close

galaxy-pairs with tidal features. The immense star formation rates accompanying these mergers

also make them viable candidates for the elusive sub-millimeter galaxies. Both arguments are

in good agreement with an increasing fraction of star-formation occurring in increasingly IR-

luminous systems towards higher redshifts (Le Floc’h et al., 2005; Le Borgne et al., 2009; Magnelli

et al., 2009).

Extending the analysis of the nature of these highest-mass objects to lower redshifts and trying

to match them to observations of galaxies in the local universe is problematic due to the small

survey volume as a result of the small angular extents of most of the fields presented here. A

second important factor is selection effects inherent to the individual fields; they are selected so

as not to contain bright sources at either UV/optical, X-ray or radio-wavelengths. For instance,

fields containing a galaxy cluster at low- and intermediate redshift would likely be excluded for

a number of reasons, e.g. due to the brightness of the most massive galaxies inside the cluster,
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the diffuse X-ray emission from the ICM of the cluster or potentially the radio-emission of a

radio galaxy as member of the cluster. Extension to higher redshifts is not less problematic ei-

ther, not only due to the faintness of the galaxies at these redshifts, but also due to the limited

rest-frame wavelength coverage for these galaxies. A passive galaxy with negligible UV emission

shortwards of the 4000Å-break at redshift z = 2 for instance would, without mid-infrared pho-

tometry as in most surveys, only be detected in the H- and K-bands, hence yielding insufficient

photometry to obtain a photometric redshift, let alone a galaxy type or physical parameters.

Furthermore, beyond redshift z = 3 we do not expect to find ANY passive galaxies since the

age of the universe at that redshift is still too small to harbour “old” (age > 1 − 2 Gyr; see,

e.g., Newberry et al., 1990; Barger et al., 1996; Poggianti et al., 1999; Falkenberg et al., 2009a,b)

galaxies.

6.6.5 Field-to-field variation and cosmic variance

Building on our sample spanning multiple fields we can also compare the variation between the

individual fields with theoretical expectations for the cosmic variance. Cosmic variance refers

to differences in the distribution of galaxy properties (number densities, stellar masses, etc) as

a consequence of the range of galaxy environments covered by the observations. Generally

speaking we expect the variations to grow with galaxy stellar mass, as more massive galaxies

are less abundant than lower-mass galaxies, and to increase with decreasing field size as we

are less likely to sample a representative fraction of the universe. In Fig. 6.13 we show the

size of this effect, computed following the recipe in Moster et al. (2010), for a field of 10× 10

arcmin2, matching the size of the deep MUSYC fields. One major difficulty in this comparison

is that predictions do not extend to the highest masses, restricting their applicability to masses

Mstellar < 3× 1011M�.

However, to get an idea about the variation at higher masses we linearly (in log(mass)) inter-

polated the predictions out to higher masses, and these values are shown with dashed lines in

Fig. 6.13. This extrapolation is purely for illustrative purposes and only gives a lower boundary

to the true value, as the true amplitude rises more steeply at the high-mass end than it does for

lower masses.

Comparing the variation amongst the individual fields with the theoretical expectations we find

a generally good agreement for masses < M?, i.e. . 2× 1011M�. A notable exception is the

offset between two groups of fields in the lowest redshift bin z = 0.2 − 0.5 that was already

mentioned above. Differences at the high-mass end for each of the redshift bins are also within

the expected variance range, in particular if we consider the small number of objects and hence

large poisson errors at these masses. Furthermore, small stellar mass uncertainties of 0.3 dex,
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i.e. within the accuracy estimated in Sect. 6.5.2, are often sufficient to account for field-to-field

variations.

6.6.6 Comparison to semi-analytical galaxy formation models

In this section we want to compare our results, in particular our mass functions, with predic-

tions of semi-analytical galaxy formation models. As most of our data is based on photometric

redshifts and as most of our galaxies are too faint to be followed up by spectroscopy, this com-

parison will allow us to get a handle on systematic effects that otherwise would remain hidden.

As a comparison set we use the simulated rest-frame photometry from De Lucia & Blaizot (2007)

and Bower et al. (2006). These are the same models as presented in the comparison of true and

inferred stellar parameters in Sect. 6.5.2. For the Bower et al. (2006) catalog we also use the

photometry in the observer’s frame of reference, restricted to apparent K-band magnitudes of

KAB < 22 mag to match our observed sample, and with simulated photometric noise. We sup-

plement these with the artificial light-cones from Kitzbichler & White (2007), including both

intrinsic dust extinction and our added simulated photometric noise.

For each of the catalogs we used the photometry, ran it through gazelle and then constructed

mass function from the results, in an identical manner as done on the actual data. The results

are presented in Fig. 6.14. For reference we also show the observed mass functions from Fig. 6.13

as grey lines.

As can be seen from the figure our mass functions derived from the observed data agree very

nicely with the mass function derived from the semi-analytical photometry as long as we restrict

such comparison to the low-mass part with M < M?. The high-mass part with masses above

M? ≈ 3× 1011M� shows larger deviations between the semi-analytical models and our observed

data. Photometric uncertainties and/or scattering of low-mass low-redshift galaxies into higher

redshift bins where they would show up as massive galaxies is unlikely, as it would also affect

the simulated photometry, in particular as the filter coverage and with it the sampling of the

observed SEDs is at least as good as for the simulated data. We therefore tentatively conclude

that there is some component (or an adjustment of one of the available components) still missing

in these galaxy formation recipes that can explain the observed number of very massive galaxies,

and in particular the fraction of actively star-forming galaxies at these highest masses. Pointing

out which exact mechanism needs to be adjusted to reproduce our discovery is a non-trivial task,

as parameters are likely mutually dependent in order to sustain the good match at z = 0, and

we encourage the respective groups to have a closer look at this issue.

In the highest redshift bin, z = 2.0− 4.0, we find a comparably large number of already very

massive galaxies. However, as our comparison to the simulations show, we find a comparable
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Figure 6.14: Mass functions for each of the fields in four different redshift bins, compared to predictions from three
different semi-analytical models by De Lucia & Blaizot (2007), Bower et al. (2006) and Kitzbichler & White (2007).
For each of these we show the mass functions derived directly from the true stellar masses (corrected to match
our Salpeter-IMF), and the mass function derived from fitting their photometry via GAZELLE, taking into account
observational uncertainties.
For comparison we also show, in the lowest-redshift bin, the mass function derived from local galaxies (Cole et al.,
2000b), and, in the highest-redshift bin, for galaxies at z = 2− 3 and z = 3− 4 derived from MUSYC, FIRES and GOODS.

number of galaxies at this high-mass end that do not show up in the “true” mass distributions,

i.e. that do not include photometric scatter and photometric redshift uncertainties. We therefore

conclude that this high-mass, high-redshift population is likely an artefact and not a real feature.

6.7 Summary and outlook

In the present chapter we have presented the first application of our new photometric redshift

code gazelle. gazelle is a template-based code that uses the χ2 method to compare the ob-

served spectral energy distribution (SED) to a large set of model SEDs. From the resulting set of

χ2 values we compute a normalised probability density as a function of both redshift and galaxy

type. The highest probability density defines the best-fit value, and we derive the uncertainties

of this value by summing up ever smaller probabilities until an integrated probability of 68%

is reached while determining the extreme values within this range. gazelle also works as a

fully-equipped SED fitting code, yielding valuable physical parameters such as stellar masses,

star formation rates, stellar population ages, etc., all including their respective uncertainties, for

each galaxy, fully accounting for mutually dependent uncertainties and, in particular, uncertain-
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ties introduced during the redshift determination.

Our templates are computed using the galev evolutionary synthesis code, that allows us to

trace the spectral and chemical evolution of galaxies from the onset of star formation, which we

assume to occur at z = 8, to the present day, hence naturally including evolutionary corrections

caused by the younger age of stellar populations with increasing redshift. The model grid

contains five undisturbed galaxy types that represent the spectral types E, and Sa-Sd in the

local universe. For these models we operated galev in its chemically consistent mode that

fully accounts for the increasing initial abundances of successive stellar generations. To account

for both bluer and redder galaxies we supplemented this model set with a range of models

undergoing strong starbursts followed by passive evolution, and cover the full age-range from 0

Gyr (at the peak of star formation) to 10 Gyr (resembling old ellipticals in the local universe). In

addition to covering all non-active galaxy spectral types, our model grid furthermore includes

emission lines and gaseous continuum emission that are crucial for the accurate description of

star-forming galaxies. We also account for the attenuation of rest-frame light short-wards of the

Lyman-α line due to intergalactic hydrogen.

We applied gazelle and the above described templates to a large catalog of galaxy photometry

that was compiled from public catalogs of in total ten deep-fields, including large fields such as

COSMOS and the Subaru Deep Field, intermediate-sized fields as GOODS and the four fields

from the MUSYC survey, to pencil-beam fields such as the Hubble (Ultra) Deep Fields, or the

FIRES MS1054 field. As many of these fields were followed up spectroscopically this allowed us

to compare our photometric redshifts to spectroscopic redshifts, verifying that gazelle yields

reliable results and redshifts that are accurate to typically ≈ 5%. To show that our SED fitting

and the underlying simplified star formation histories yield accurate physical parameters in spite

of the often complex SFHs of real galaxies we also analysed three large samples of simulated

galaxy photometry from semi-analytical models of galaxy formation (Bower et al., 2006; De

Lucia & Blaizot, 2007; Kitzbichler & White, 2007) and found overall excellent agreement of the

true parameters with our photometrically derives ones.

Using a homogenised sample of K < 22 mag-selected galaxies we continued to compare the

redshift distributions among the fields and found them to generally agree with each other. At

the same time we noted a relative excess of galaxies at z ≈ 2 that we attribute to emission

lines boosting the K-band magnitudes of star forming galaxies at these redshifts, allowing us

to probe the steep mass-function down to lower masses, leading to an increased number of

detections. Observational artefacts that could counterfeit this excess could be successfully ruled

out via a Monte Carlo simulation. Overall the derived redshift distribution matches very well

the predictions from the Kitzbichler & White (2007) light-cones if all observational effects, in

particular dust extinction and photometric noise, are taken into account.
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We then went on and created mass-functions for all fields in our sample. While we found

generally good agreement between the fields, we also found an offset between several fields for

M < M? galaxies in our lowest-redshift bin which we attribute to the way these fields were

selected. At the high-mass end we find a small population of galaxies whose space density

exceeds the predicted high-mass drop-off from the Schechter function. At the highest masses

(> 1012M�) these galaxies are old, passively evolving galaxies, while for slightly smaller masses

3× 1011 ≤ M < 1012M� they contain a small fraction of actively star-forming galaxies, and this

fraction rises rapidly towards higher redshifts, from 13% at z = 0.5− 1.0 to 22% and possibly up

to 55% at z = 1.0− 2.0. We conclude that with this population we see indeed the first ellipticals

in formation and, as these in the local universe mostly reside in over-dense regions, possibly

the formation of the first galaxy clusters. The small population of highest-mass galaxies in our

highest-redshift bin (z = 2.0− 4.0), however, is likely to be an artefact resulting from insufficient

photometric coverage of galaxies at these redshifts.

We conclude that indeed our approach of using superior templates including emission lines and

a wide range of metallicities, combined with a photometric redshift code that yields a wealth of

physical parameters from the available photometry while fully accounting for all involved un-

certainties, is a significant step forward in our quest to understand how, and when, the galaxies

we observe in the nearby universe evolved since the onset of star formation.

Building up on these encouraging results we will, in a next step, use the catalog of physical

parameters for ≈ 106 galaxies presented here to directly study the mass assembly of galaxies of

the different types via their redshift-dependent masses and ages. A more in-depth analysis of

the mass and number evolution of galaxies classified as undisturbed E, and Sa–Sd-type galaxies

will allow us to reconstruct their evolution and investigate possible transformation scenarios

among the different types.
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In this thesis I presented a comprehensive approach to model, analyse and study the evolution

of galaxies over a range of redshifts, from the local universe out to high redshifts, with particular

emphasis on the redshift range z = 1.4− 2.5, the so-called “redshift desert”.

In the first two chapters following the introduction I presented the models I used for this pur-

pose. My model grid, presented in detail in Chapter 3, was generated using the galev code.

galev allows me to follow the spectral and chemical evolution of galaxies in a chemically

consistent way, fully accounting for the increasing initial abundances of successive stellar gener-

ations. It furthermore includes gaseous line and continuum emission, crucial to model actively

star-forming galaxies. I showed that using only a few input parameters such as the initial mass

function and the parametrisation of the galaxy’s star formation history, galev successfully re-

produces a range of observable parameters for local galaxies of each spectral type, such as mass-

to-light ratios, star formation rates, metallicities, and, crucial for the remainder of this thesis,

colours and spectra. Based on these models, I showed that sub-solar metallicities can have a sig-

nificant effect on the spectra and the colours of galaxies, and subsequently have a strong impact

on the derived masses, star formation rates, and ages. If these are not properly accounted for,

severe errors and biases are introduced. I showed that evolutionary corrections, resulting from

an increased SFR and generally younger stellar populations at higher redshifts, can dramatically

boost the luminosity, reaching more than 10 mag in some cases. Starbursts, even if they add only

a small percentage to the stellar mass of a galaxy, can dominate the overall spectrum, leading to

severely (up to a factor of 50) underestimated stellar masses. Later, post-starburst phases form

a narrow sequence and reach very red colours, successfully explaining the full observed colour

range of galaxies at all redshifts.

Although galev has been around for 20 years at the time of writing, we (Dr. Peter Anders

and the author) continuously keep updating and improving the code. One of my contributions,

in addition to improvements allowing galev to trace the evolution of a model-galaxy with

redshift, was to prepare the code for the next generations of stellar isochrones (including effects

of a binary fraction and stellar rotation) and spectral libraries (both theoretical and observed),

as well as variable initial mass functions. One example of our new intermediate-resolution

library (we currently use a low-resolution with wavelength sampling of 10− 20Å), with a spectral

resolution of 1Å as compared to the new high-resolution library with 0.05Å resolution (both

computed using PHOENIX, Hauschildt & Baron, 2010), is shown in Fig. 7.1. These new libraries

will be published in the near future, included in the already existing web-interface that I also

developed as part of the work towards this thesis, and allow us and other users to perform a

more detailed analysis of spectra from modern spectrographs.

In Chapter 4 I subject my model grid to a rigorous comparison with partly empirical colour

selection criteria and with the observed physical parameters of the galaxies selected with these
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Figure 7.1: Illustration of a spectrum
computed with the new intermediate-
resolution library (red line, resolution
1Å), compared to a current low-resolution
spectrum (blue line, wavelength resolution
of 10Åin the UV to 20Åin the optical).
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Based on the observed colours alone my model grid not only predicts the correct stellar masses

and star formation rates, but, where available, also the metallicities, impressively emphasising

the success of our chemically consistent modelling. In some cases I could explain the origin

of likely contamination by selected, although not targeted, galaxy populations and show how

it can be minimised with additional photometric data. If sufficient data, i.e. photometry in

several bands covering a wide wavelength range, is available, my model grid also allows me

to distinguish between dust-reddened and intrinsically red, hence old and passively evolving

galaxies. Finally, my model grid allows the user to establish relations between galaxy classes

selected via various criteria, opening a window to the study of the underlying parameters that

shape the individual classes. The next step in this direction will be to observationally verify the

predicted relations, and my sample, presented in Chapter 6, will be the ideal basis for this.

Before continuing with the analysis of my sample I present in Chapter 5 a study of the impact

of sub-solar metallicities on photometrically derived redshifts. As mentioned above, galaxies

get bluer with decreasing metallicity, and if this is not properly accounted for, either by using

templates that include the chemical evolution or by including a wide range of metallicities in the

template set, it leads to systematically underestimated redshifts. While I find this effect to extend
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out to higher redshifts it is particularly important at low redshift as here the effect is greatest;

even small redshift inaccuracies can have a devastating impact on any subsequent analysis. In

collaboration with Dr. Thorsten Tepper-García I am currently involved in a project studying

the effect of stochastic attenuation on both photometric redshifts and the physical parameters

of galaxies derived together with them. We simulate galaxy photometry for a large number of

sight-lines, each with its own absorption characteristic, and for different combinations of filters

(broad-band filters only, or combinations of broad-, intermediate- and narrow-band filters) to

search for the best way to derive accurate physical parameters.

Chapter 6 builds upon all previous results and applies them to observational data. The galaxy

sample I am using is the largest ever observed meta-sample of galaxies with multi-band pho-

tometry, compiled from public data from a number of surveys. As mentioned already in the

introduction, a large fraction of these galaxies are too faint to be followed up spectroscopically,

so using photometric redshifts is the only reasonable way to study them in more detail and

extract physical information to infer their evolution. For this purpose I created gazelle, a

photometric redshift code that includes all the amenities of an SED fitting code, yielding not

only a redshift, but also a wealth of physical information. This approach ensures that all in-

terdependencies, for instance between redshift, galaxy type, dust extinction and stellar mass,

are accounted for, yielding more realistic uncertainties than the sequential approach using two

or more codes, sometimes with different templates, to extract the same data. To demonstrate

the accuracy and reliability of this combined approach I compared my the redshifts obtained

from photometry to observed spectroscopic redshifts; physical parameters were checked against

model values from semi-analytical models. This reveals that photometric redshift are accurate to

≈ 5%, and stellar masses and star formation rates to ≈ 0.1 dex or ≈ 25%. With the availability

of our new higher-resolution spectra I will extend this work with a detailed full-spectrum com-

parison to observed spectra at a range of redshifts to see how well spectral features such as the

strength of absorption and emission lines can be reproduced from only the photometric data.

In a first application of this code I determined the redshift distribution across all fields and

found them to be in good agreement with each other and with predictions of current structure

formation model predictions. I also found a slight excess of galaxies at z ≈ 2, originating from

emission lines that lower the mass detection limit for galaxies at these redshifts. I proceeded to

derive stellar mass functions, paying particular attention to galaxies at the high-mass end, and

find that their space density increases rapidly towards lower redshifts. The galaxy population

at these masses, although being dominated by passively evolving galaxies, contains a small per-

centage of actively star-forming galaxies, challenging our current understanding of the build-up

of the most massive, passively evolving galaxies mainly via dry merging without additional star

formation. The fraction of these galaxies rises rapidly towards higher redshifts, in good agree-

ment with the idea of “downsizing”, in which more massive galaxies form a larger fraction of
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their stars at earlier times, while the formation of stars is still ongoing in lower-mass galaxies. I

again compared my mass-function to predictions from semi-analytical models and found gen-

erally good agreement – with the exception of objects in my lowest-redshift bin, where field

selection criteria play a major role, and with the highest mass galaxies. The latter effect, how-

ever, indicates a missing component in the suite of recipes governing the evolution of galaxies in

semi-analytical models. This calls for a closer investigation of this galaxy population, ideally in

collaboration with the groups operating the semi-analytical models, to pinpoint and resolve the

reason for this discrepancy.

These two aspects, however, are only the beginning of a more extensive analysis of my sample.

I here want to highlight three follow-up studies that I will carry out in the future: 1) Using the

additional information given by gazelle I will break down the stellar mass functions by either

galaxy type and/or specific star formation rate to gain a closer insight into differences and

similarities in the evolution of passive versus star forming galaxies. Comparing their relative

numbers and evolution will yield insight into how they build up their stellar mass – via slow,

steady accretion and subsequent quiescent star formation or in violent mergers. 2) Related to

the previous aspect I plan to use stellar population ages and stellar masses for each galaxy to

establish their mean age as a function of mass, or the other way round, the average mass as

function of stellar population age (see Fig. 7.2 for a preliminary example). The evolution of

this relation will directly yield the mass assembly history of galaxies from the highest redshifts

to the local universe. I will then study the relative importance of star formation, i.e. build-up

of mass within isolated galaxies, as opposed to mass increase by merging and accretion. 3)

A more detailed analysis of the mass evolution of galaxies classified as undisturbed spectral

types E-Sd will offer insight into the question of when this sequence formed, and what likely

transformations occur among the different classes that finally led to the galaxy mix we observe in

the nearby universe. These three projects only give a taste of the fantastic possibilities opening

up by combining an efficient and purpose-tailored code with powerful models and applying

them to some of the best data currently available.

In the appendices I present two projects that I also have done during the time of my thesis. They

focus more on galaxies in the nearby universe that often offer complementary insight into how

galaxies evolve at high redshifts. Appendix A is an excellent example of this: I pioneered the

technique of using deep optical and near-infrared multi-wavelength photometry to break the

age-metallicity degeneracy and obtain ages, metallicities and masses for a sample of globular

clusters in the lenticular galaxy NGC 4570, a member of the Virgo galaxy cluster. The age-

distribution of the globular clusters not only yielded a population with ages in agreement with

the age of the universe, indicating that at least some fraction of the galaxy’s stars were formed

very early on, but I also found a secondary population of intermediate-age clusters. From the

large number of these clusters, their high masses and their ages we conclude that this galaxy
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Figure 7.2: V-band light-weighted stellar
population ages as function of stellar mass
for three different redshift bins, based on
data from the COSMOS survey. The effect
of “downsizing” (more massive galaxies
have older stellar populations than lower-
mass galaxies) is nicely shown.

Important note:
This figure shows an as yet preliminary
result! No correction for incompleteness
has been applied, affecting the lowest
masses and youngest ages at each redshift.

underwent a major-merger event ≈ 1− 2 Gyr ago. The metallicity of the clusters allowed us to

constrain the galaxy type of the merger-progenitors to be of Sb-type. The applicability of this

technique is only limited by the ability to resolve individual globular clusters and obtain accurate

photometry of them. Currently this restricts the maximum distance to ≈ 100 Mpc, but might be

extended to even larger distances with future generations of telescopes and instruments. This

new approach allows us to reliably re-construct the violent formation history of a vast number

of galaxies, and hence offers an independent, additional tool to study the evolution of galaxies.

Appendix B deals with determining one of the most basic ingredients of galaxy models, both

evolutionary synthesis and semi-analytical, the stellar initial mass function or distribution of

stellar masses of a newly formed stellar generation. We use luminosities in the far-ultraviolet

and in Hα as a proxy for the relative numbers of stars at intermediate and the highest masses,

respectively. Our target for this pilot-study was the extreme outskirt of Arp 78, where, as a

consequence of the low gas densities, several authors predicted large deviations from a universal

IMF. However, our results showed these regions to be fully in agreement with a Salpeter-IMF,

without any density-dependent deficiency of high-mass stars. Clearly this result is based on a

single galaxy, and hence a similar analysis of a larger sample is necessary to allow for a more

general conclusion.

To conclude, this thesis presents a consistent and comprehensive study of galaxy evolution,

based on a comparison of observed data of galaxies at both high-redshift and in the nearby

universe with models of galaxy evolution, advancing our understanding of how galaxies like

our own cosmic home, the Milky Way, were formed and evolved into the beautiful manifold

observed in the night sky.
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Abstract:

We here present our first attempt to use Globular Clusters as tracers of their parent galaxy’s for-
mation history. Globular Cluster Systems of most early-type galaxies feature two peaks in their
optical colour distributions. Blue-peak Globular Clusters are generally believed to be old and
metal-poor. The ages, metallicities, and the origin of the red-peak Globular Clusters are being
debated. We here present our analysis of the ages and metallicities of the red peak Globular
Clusters in the Virgo S0 NGC 4570 using deep Ks-band photometry from NTT/SOFI (ESO pro-
gram ID 079.B-0511) for the red-peak Globular Clusters in combination with HST-ACS archival
data to break the age-metallicity degeneracy.

We analyze the combined g, z, and Ks spectral energy distribution by comparison with a large
grid of GALEV evolutionary synthesis models for star clusters with different ages and metal-
licities. This analysis reveals a substantial population of intermediate-age (1–3 Gyr) and metal-
rich (≈ solar metallicity) Globular Clusters. We discuss their age and metallicity distributions
together with information on the parent galaxy from the literature to gain insight into the for-
mation history of this galaxy.

Our results prove the power of this approach to reveal the (violent) star formation and chemical
enrichment histories of galaxies on the basis of combined optical and near-infrared photometry.
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A.1 Introduction

Globular Cluster (GC) systems are now recognized as powerful tracers of their parent galaxy’s

formation history (West et al., 2004; Fritze, 2004; Brodie & Strader, 2006). From their age and

metallicity distributions one can reconstruct the parent galaxy’s (violent) star formation and

chemical enrichment histories all the way from the very onset of star formation in the Early

Universe to the present.

Most early-type galaxies show bimodal color distributions for their GC systems (e.g. Gebhardt

& Kissler-Patig, 1999; Kundu & Whitmore, 2001a,b; Peng et al., 2006): A universal blue peak and

a red peak for which the color and height relative to the blue peak vary from galaxy to galaxy.

The blue peak GCs are generally agreed to be old and metal-poor, the properties and origin of

the red peak GCs is still unclear. Scenarios for the formation of the red peak GCs range from

in situ formation of a secondary more metal-rich population of GCs within their parent galaxy

shortly after the first one (Forbes et al., 1997) to major gas-rich mergers (e.g. Ashman & Zepf,

1992) and hierarchical accretion events involving enough gas to trigger the formation of new GC

populations (e.g. Beasley et al., 2002). The age distributions of the secondary GCs predicted by

these different scenarios are different: almost as old as the old and metal-poor blue peak GCs

but more metal-rich than those in the first case, of some intermediate age reflecting the time of

the gas-rich merger in the second case, and broad or multi-peaked for a series of hierarchical

accretion events involving gas in the third case. The metallicities of the secondary, and eventually

any further generations of GCs should reflect the ISM abundances in the merging or accreted

objects at the time of merging or accretion. They could, at most, be somewhat higher for those

GCs that formed late enough in a burst to already incorporate some enrichment during the burst

itself. Hierarchical accretion without gas and the formation of new generations of GCs cannot

explain the red-peak GCs since dwarf galaxies known so far contain old and metal-poor, hence

blue GCs.

To determine the ages and metallicities of the red-peak GCs in one of those early-type galaxies

with clear bimodality in its optical GC colour distribution is the aim of our present investigation

and should help constrain the formation scenario for the red-peak GCs in this particular galaxy.

A.1.1 Our approach to lift the age-metallicity degeneracy

Optical data alone do not allow us to disentangle ages and metallicities: Colour-to-metallicity

transformations have to assume an age, while colour-to-age transformations are only valid for

one metallicity. The degeneracy, however, can be broken by including near-infrared data that are

more sensitive to metallicity rather than to age.
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Anders et al. (2004a) used extensive artificial star cluster tests and showed that observations in

three passbands for GCs in dust-free E/S0s (or four passbands for young star clusters in dusty

environments), spanning as wide as possible a wavelength-basis (U through K) and including

at least one NIR-band (e.g. H or K) with photometric accuracies ≤ 0.05 mag in the optical and

≤ 0.1 mag in the NIR allow to disentangle ages and metallicities and to determine individual

GC metallicities to < ±0.2 dex, and ages to < ±0.3 dex. I.e., these data allow to distinguish

≤ 7 Gyr old GCs from those ≥ 13 Gyr old.

Similar studies also using NIR-data to determine ages and metallicities of globular clusters have

only been done for a few galaxies until now (Puzia et al., 2002; Kissler-Patig et al., 2002; Hempel

et al., 2003; Larsen et al., 2005; Hempel et al., 2007). More than half of these galaxies were found

to host a population of GCs that is younger and/or more metal-rich than the ubiquitous old and

metal-poor GC population.

Some of these previous studies discussed average properties of the blue and red peak GCs

by investigating the mean colours of blue and red GC. We here derive ages, metallicities, and

masses for every individual cluster with (g, z, K) photometry. This also enables us to study

whether there is more than one generation of GCs in the red peak, to look for correlations of

these parameters, and investigate their spatial distributions.

We have chosen the Virgo cluster S0 galaxy NGC4570 (= VCC1692) for our pilot study because

it has archival g− and z−band data from the ACS Virgo Cluster Project (Peng et al., 2006) that

show two very clear peaks in the optical g − z colour distribution of its GC system. The red

peak is about two thirds the height of the blue one, both have very similar widths. In particular,

the optical colour distribution shows no evidence for substructure within the red peak or for a

third peak. The mean g− z colours of the blue and red peaks are 0.88± 0.01 and 1.38± 0.03,

respectively, with a fraction of 39 % of all the 122 GCs detected belonging to the red peak.

NGC4570 has BT = 11.82 mag (Côté et al., 2006), which at a kinematic distance modulus of

BDM = 31.16 (Mei et al., 2007) gives it an absolute MB = −19.3 mag, i.e. it is an average

luminosity S0.

van den Bosch et al. (1998) and van den Bosch & Emsellem (1998) detected a nuclear stellar disk

with a radial extent of ≈ 7 arcsec. From both spectroscopy based on Hβ and [MgFe] line indices

as well as photometry in U, V and I they estimate an age of the stellar population inside that

structure of ≤ 2 Gyr and a metallicity close to solar.

From the same ACS Virgo Cluster survey that reported the GC colours Ferrarese et al. (2006)

show that NGC 4570 shows a nested-disk structure composed of two morphologically distinct

inner and out disks. Detailed isophotal analysis reveals a blue stellar ring with radius 150 pc,

but less than 7 pc wide, around the nucleus. This ring leaves a clear imprint on the major axis



188 App. A: Young GCs in an old S0: Formation History of NGC4570

g−band surface brightness profile (cf. Fig. 104 of Ferrarese et al., 2006). The structure of this

inner region was discussed by van den Bosch & Emsellem (1998) in the context of secular bar

evolution.

A.2 Models

We used our GALEV evolutionary synthesis models for star clusters (Schulz et al., 2002; Anders

& Fritze, 2003; Chapter 2) to compute a large grid of models for five different metallicities

−1.7 ≤ [Fe/H] ≤ +0.4 and ages between 4 Myr and 16 Gyr in time-steps of 4 Myr. Our models

are based on Padova isochrones and a Salpeter (1955) initial mass function (IMF) with a lower-

mass limit of Mlow = 0.10 M� and upper mass limits between Mup ≈ 50− 70 M� depending on

metallicity.

Since early-type galaxies in general, and NGC 4570 in particular, do not contain significant

amounts of dust we did not include internal extinction into our grid but assume E(B− V) = 0

throughout. We therefore only need three filters (HST F475W, F850LP and SOFI Ks) to determine

all relevant parameters (age, metallicity, and mass) for each cluster.

Note that we do not depend on color transformations from the HST to Standard Johnson filters.

For optimal accuracies, our models first compute spectra as a function of time, that later are

convolved with the corresponding filter curves, in this case for the HST F475W and F850LP

filters and the SOFI KS filter, to yield the final magnitudes.

Figure A.1 shows examples of Spectral Energy Distributions (SEDs) for star cluster models at

two different ages of 1 and 13 Gyr, and all five metallicities for each of them. The SEDs shown

have been scaled to match the g-band magnitude of a solar metallicity star clusters with initial
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Figure A.1: Spectral energy distributions
(SEDs) for star cluster models at two
different ages of 1 Gyr at brighter and
13 Gyr at fainter absolute magnitudes,
respectively, and 5 different metallicities
ranging from 1/50 Z� to 2.5 Z� in each
case. All SEDs have been scaled to
match the g-band magnitude of the solar
metallicity model with initial mass 106 M�.
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mass 106 M�. Fluxes in all filter bands of course scale with cluster mass. At both ages the lines

representing the different metallicities split up towards both longer and shorter wavelengths.

We exploit this to separate the effects of age and metallicity.

A.2.1 AnalySED

To obtain accurate ages, metallicities and masses for the detected clusters we used the SED

analysis tool AnalySED developed by Anders et al. (2004a). This program compares the observed

SED of a star cluster with a large grid of model SEDs and finds the best-fitting match to the

observations. In this process ages and metallicities for each cluster are derived from the observed

spectral energy distributions. Once those parameters are found the observed brightnesses are

translated into masses.

Since we keep the full χ2 distribution and not only the best fitting solution we are able to

determine the 1σ uncertainties for all our derived parameters by summing up the normalized

probabilities sorted from the highest to the lowest values until an integrated probability of 0.68

is reached. The uncertainty ranges for the different parameters are then given by their extreme

values reached within this 1σ probability range (cf. Anders et al. (2004a) for details of the method

and e.g. Anders et al. (2004b) for an earlier application).

A.3 Observations and data reduction

A.3.1 Near-infrared data

We observed NGC 4570 in two subsequent nights (2nd to 4th March 2007) using the ESO-NTT

equipped with the SOFI near-infrared imager. This instrument consists of a Hawaii HgCdTe

1K×1K chip and 0.288′′ pixels yielding a field-of-view of ≈ 5× 5 arcmin. To avoid non-linearities

of the detector we chose an detector integration time (DIT) of 6 seconds. 12 of these exposures

were internally averaged by the readout electronics, resulting in an exposure time per frame of

72 seconds. Since NGC 4570 has an extent of only 4′ × 1.1′, we could use one half of the chip for

the object while obtaining a simultaneous sky-exposure in the other half of the chip, swapping

sides after each exposure and applying small shifts to avoid contamination by bad pixels.

Reduction

Data reduction largely followed the procedures outlined in the SOFI instrument handbook. The

individual frames were corrected for the inter-row cross-talk and then corrected with a flat-field
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to remove pixel-to-pixel sensitivity variations. These flat-fields consisted of three different com-

ponents: dome-flats corrected for their characteristic on-off pattern using the recipe provided on

the NTT-SOFI web-site; illumination correction surface obtained from repeated observations of

a standard star at different positions of the detector to remove the illumination gradient intro-

duced by the dome flats; a “super-flat” created from the sky frames of both nights to remove

remaining inhomogeneities and cosmetics from dust on the filter. Since the observations were

carried out under non-photometric conditions we used the data from the instruments web-page1

to obtain the illumination correction.

After flat-fielding all the frames we estimated the background in all frames by iteratively clipping

values larger then 3σ above the mean of the full frame. We then used six sky-frames that were

obtained closest in time, scaled each of them individually to the sky-value of the object frame

and subtracted their average from the object frame. We varied the number of frames to average,

but found that six is the best compromise between signal-to-noise and artifacts introduced by

the pupil-rotation of the alt-az mounted telescope.

All the sky-subtracted frames were aligned by matching coordinates of several background

galaxies in each frame to coordinates in a reference frame; we used galaxies instead of stars

because due to the high galactic longitude there were too few stars to allow for proper match-

ing. In a final step we stacked all but those frames with a sky-value deviating more than 2σ from

the average.

Combining all those exposures from both nights results a total exposure time for our K-band

image of texp ≈ 25 ks ≈ 9.5 hours.

Photometric calibration

We could not base our photometric calibration on standard stars, because during both nights

observations were hampered by a varying degree of cloudiness. We therefore compared bright-

ness profiles of the host galaxies with calibrated data from the 2MASS survey (see Skrutskie

et al. (2006) for a review) and own observations obtained later with the SIRIUS instrument at the

InfraRed Survey Facility at the South African Astronomical Observatory. Both results showed

excellent agreement within the error ranges of ∆mK ≈ 0.03 mag, that can easily be explained by

minor differences in the filter transmission curves. However, we account for this uncertainty by

adding the calibration error in quadrature to the photometric errors. Calibration of exposures

from both 2MASS and SIRIUS finally relied on standard stars from the Persson et al. (1998)

catalog, so our K-band magnitudes are in the VEGA magnitude system.

1http://www.ls.eso.org/lasilla/sciops/ntt/sofi/
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This allows us to detect point sources down to mKs ≈ 21 mag at the 10σ-level, making the depth

of our observations comparable to deep surveys obtained with the same configuration, e.g. the

K20 survey (Cimatti et al., 2002b).

A.3.2 HST data

The HST data consisted of two datasets taken with the Advanced Camera for Survey (ACS) on-

board the Hubble space telescope as part of the ACS Virgo cluster survey (Côté et al., 2004). For

both datasets with filters F475W (≈ SDSS g) and F850LP (≈ SDSS z) we relied on the On-the-fly

reduction performed automatically upon retrieval from the MAST Archive2 and using the best

reference files. We then performed an additional alignment step to ensure a match of coordinates

in both frames as good as possible.

Calibration of the HST data was done using the appropriate header entries from the fits-files.

For details on this process see the HST Data Handbook (Pavlovsky et al., 2005). To avoid any

unnecessary conversion between different magnitude systems, we performed photometry in

both HST filters using ST magnitudes.

A.3.3 Cluster selection

Globular Cluster candidates were selected from the HST images using SExtractor (Bertin &

Arnouts, 1996). A valid detection is characterized by at least 4 adjacent pixels with intensities

of 3σ above the local background, resulting in two catalogs with > 1000 objects each. We

then cross-correlated these catalogs to remove remaining spurious detections as e.g. remaining

cosmics.

For the ≈ 330 remaining candidates we derived intrinsic source sizes using the ISHAPE-package

from BAOLAB (Larsen, 1999). This algorithm in our case convolves a King profile with a fixed

concentration parameter c = rt
rc

= 30 (or equivalently log( rt
rc

) ≈ 1.5) but variable radii with the

instrumental point spread function (PSF) created by TinyTim (Krist, 2004) and determines the

best fitting radius via χ2-minimization. We rejected all objects appearing stellar-like (intrinsic

radius ri < 0.2 px ≈ 0.8 pc at a distance D ≈ 17 Mpc (Tonry et al., 2001), 17 objects) or too

extended (ri > 5 px ≈ 20 pc, 37 objects) to be a globular cluster.

2http://archive.stsci.edu/
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A.3.4 Photometry

For the remaining ≈ 280 GC candidates we obtained aperture photometry using commands

from the ESO-MIDAS package. For the HST images we used an aperture radius of 15 pixels

and a sky annulus from 17 to 20 pixels. To compensate for the low-intensity extended wings

of the ACS PSF we applied an aperture correction of 0.067 (0.082) mag to the F475W (F850LP)

magnitudes according to the tabulated Enclosed Energy values of 0.940 (0.927) determined by

Sirianni et al. (2005). Although these factors still depend both on the position of the GC on

the detector and intrinsic colour of the GC, the implied uncertainties are much smaller than the

photometric uncertainties and can therefore be neglected.

To derive photometry for the ground-based Ks-imaging we transformed the coordinates from the

combined HST catalog into physical coordinates in the K-image and then used these coordinates

as center positions for the photometry. Using SExtractor to also obtain a K-band detection

catalog yielded less reliable results and missed many of the sources found with the superior

resolution of the HST. We used an aperture of 2′′ and an aperture correction derived from stellar

photometry within the field-of-view of (0.2± 0.03) mag. For 117 candidates we could not derive

a K-band magnitude, mostly because they were not included within or too near to the edge of

the K-band field-of-view, and in some cases because they were out-shined by the bright galaxy

background.

To remove last outliers we introduced a colour selection criterion of (gST− zST) ≤ 1.0 and (zST−
Ks,Vega) ≤ 4.5, covering the color range of our models. We further removed all candidates with

magnitude errors ≥ 0.1 mag in g and z and ≥ 0.3 mag in Ks (see Fig. A.2 for the distributions

of magnitude uncertainties as a function of luminosity in all three bands). This leaves us a final

sample of 63 bona fide GCs.

A.4 Results: Ages, metallicities, and masses

For three selected clusters we present the detailed χ2 distributions in Fig. A.3. This Fig. demon-

strates that the reason for the uncertainties in the derived parameters are mostly relatively to

isolated secondary peaks in the probability distribution. The cluster in the upper panel has a

well-defined best-fit age of 1.12+0.90
−0.33 Gyr, a metallicity of [Fe/H] = −0.3+0.3

−0.4 and a derived mass

of (2.64+1.59
−0.25)× 105 M�. Its χ2 value for the best solution with [Fe/H] = −0.4 is a factor of 10

better than that for the somewhat lower metallicity [Fe/H] = −0.7 paired with slightly higher

age. The cluster in the middle panel has an age of 16.0+0.00
−10.9 Gyr, a metallicity of [Fe/H] = −1.7

and a derived mass of (4.81+0.00
−2.87)× 105 M�. It is clearly seen that the old age low metallicity

solution has a χ2-value about two orders of magnitude better than that for any other metallicity.
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Figure A.2: Photometric errors as function
of absolute magnitudes for the HST filters
F475W and F850LP and the NTT filter Ks.
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Also the intermediate age solution for the same metallicity has a significantly higher χ2. The

cluster in the lower panel has an age of 5.62+10.4
−4.39 Gyr, a metallicity of [Fe/H] = −1.7 and a de-

rived mass of (9.96+13.6
−7.33)× 105 M�. Note the large age uncertainty for this cluster, that directly

influences the derived mass of the cluster. Again, however, only the lowest metallicity gives an

acceptable fit. Note that since our grid of models does not sample the covered metallicity range

finely enough. Therefore only the lowest metallicity model results in a good fit hence we do not

give errors on metallicity for those two clusters.

These three GCs represent typical cases for a very good fit with a fairly well constrained age, a

securely old (> 5 Gyr) but less well constrained age, and a poorly constrained age, respectively.

A.4.1 Ages

Figure A.4 shows the age distribution of all the GCs from our final sample. At old ages (age >

1010 yr) we see the analogues to our old Milky Way GCs formed during an early phase of galaxy

formation.

We also find a significant population of younger GCs with ages of 1 − 3 Gyr that must have

formed during some violent star formation event. Possible candidates for such events are mas-

sive bursts of star and star cluster formation that come along with a merger of two gas-rich

spirals or the accretion of a gas-rich companion.

While the light grey histogram in Fig. A.4 shows the age distribution of all our GCs, the dark

histogram shows metal-poor GCs only. The old peak contains GCs with [Fe/H]= −1.7 close

to the metallicity of the halo GCs in our Milky Way, but also more metal-rich GCs while the
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intermediate-age peak is predominantly made up by GCs with metallicities higher than [Fe/H]=

−1.7.

A detailed look at the 8 GCs in the log(age) bins 8.65-8.9 and 9.15-9.4 shows that within their

error bars they might as well be part of the 8.9-9.15 Gyr peak. The GCs in the age bins 9.4-9.9, on

the other hand, could, within their 1σ uncertainties as well be part of the truely old, i.e. 10− 13

Gyr population.

Old and metal-rich GCs

4 out of the 10 old clusters have SEDs best described by solar metallicity. This, however, does

not seem very plausible, since it would require an incredibly fast global chemical enrichment

to solar metallicity within a timescale of only about a Gyr. On nearer inspection, one of these

four GCs has a large age uncertainty ranging down to 1.25 Gyrs, so it might well belong to our

newly detected intermediate age population. The three remaining GCs are located within the

extent of the host galaxy, so that their photometry might still be contaminated by light from the

surrounding galaxy. This is also supported by the poor quality of their SED-fit with remarkably

low unnormalized integrated probabilities . 10−10.

A.4.2 Spatial distribution

There is no obvious difference in the spatial distributions of the old and younger GCs, as seen

in Fig. A.5. GC numbers, however, are too small for meaningful statistical tests.

We note that the bulk of the GCs we detect belong to the red peak of the optical GC colour

distribution. Only the very brightest GCs from the blue optical peak are detected in Ks and,

hence, part of our sample.

A.4.3 Metallicities

The metallicity distribution (Fig. A.6) is dominated by a large population of 27 out of 63 clusters

with solar metallicity, only 21 clusters have very low metallicities of [Fe/H] = −1.7 in the range

of Galactic old GCs.

The fact that we find only relatively few old and metal-poor GCs can be explained as a selection

effect: Since we only include clusters that were also detected and also have good photometry in

Ks we prefer intrinsically red objects. Old Milky Way-type globulars, however, have blue colors
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Figure A.6: Metallicity distribution of our
GCs. Light grey histogram: all GCs, dark:
GC with ages younger than 5 Gyr.

due to their low metallicity and are hence not included in our sample. Indeed, the bulk of all

our GCs, and of the metal-rich ones in particular, are younger than 3 Gyr, again a selection

effect, since 3 Gyr old GCs are brighter than 13 Gyr old ones by 1.1 to 1.3 mag, depending on

metallicity and filter.

A.4.4 Masses

Fig. A.7 shows the mass distribution of our GCs, again for the full sample in light grey and

for the subsample of GCs with ages < 3 Gyr in dark grey. The mass distribution of the full

GC sample clearly looks like a Gaussian with a turn-over mass around log(〈MGC[M�]〉) = 5.3

and œ(MGC) = 0.6 dex, very similar to the turn-over of the GC mass function in the Milky Way
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Figure A.7: Mass distribution of the GCs
in NGC 4570. The light grey histogram
is for all GCs from our sample, the dark
one for the subsample of GCs younger
than 3 Gyr. The solid line is a Gaussian
fit to our unbinned GC mass distribution
with a median of log(〈MGC[M�]〉) = 5.3
and œ(MGC) = 0.6 dex, normalized to the
number of GCs in our sample. The dotted
line gives the Gaussian for the Milky Way
GCs with log(〈MGC[M�]〉MW) = 5.47 and
œMW(MGC) = 0.50 dex, normalized to the
number of GCs in our sample.
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which occurs at log(〈MGC[M�]〉MW) = 5.47 with œMW(MGC) = 0.50 dex (Ashman et al., 1995).

The fact that the mass distribution of the young GCs does not extend to the same high masses

as that for the old ones cannot be a selection effect, since more massive clusters of young age

would be easily detectable if they were there. It seems that the secondary event that formed

the ∼ 2 Gyr old GCs in NGC 4570 did not form the GCs with the same mass function as

the old GC population. Careful modeling of cluster destruction effects were required to really

prove this conjecture. Dynamical friction, which is most important for massive clusters, might

have preferentially destroyed those, in particular if the secondary GC population were more

centrally concentrated than the primary one, as previously found in many, but not all, bimodal

GC systems. In addition to that we might have missed massive GCs in front of the bright galaxy

background if they either were initially closer to the centre (mass segregation) or driven towards

the centre by dynamical friction faster than the lower mass ones.

A.4.5 The subsample of GCs with high photometric accuracy

In Fig. A.8 we present our results for the age, metallicity, and mass distributions of the subset of

GCs from our sample with the best photometric accuracies: ∆g, ∆z < 0.10, ∆Ks < 0.20 mag and

∆g, ∆z < 0.05, ∆Ks < 0.10 mag, respectively. This Fig. shows that our results are unaffected by

the slightly higher uncertainties in our full sample. The age, metallicity, and mass distributions

are robust. High photometric accuracies are only achieved for the brightest clusters. Hence it is

no surprise that the high accuracy subsample lacks some of the low mass GCs.

A.4.6 Alternative solutions

Ages for fixed metallicities [Fe/H] = −1.7 or [Fe/H] = 0.0

In this subsection we explore to what extent our results change if we artificially restrict the

allowed parameter range. Our aim is to see whether our basic finding of ∼ 1− 3 Gyr old/young
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Figure A.8: Age, metallicity, and mass
distributions for the subsample of GCs
with high (light grey) and very high (dark
grey) photometric accuracies.

GCs in NGC 4570 is affected by these assumptions.

If we limit the available parameter range to a metallicity [Fe/H] = −1.7 (see. upper panel of

Fig A.9 for comparison) many clusters are better described by older ages. These are needed

to counter-balance the bluer colours of the lower metallicity models. The older ages, in turn,

also result in slightly higher masses. However, the principle structure of the age distribution

and, in particular, the peak at intermediate ages of 1–3 Gyr remain. This “worst-case” scenario

emphasizes the robustness of our cluster age determination.

We also determined ages for a metallicity fixed to the solar value and again found little difference

compared to the original results (see lower panel of Fig. A.9). Although clusters on average get

slightly younger in this case, the peak of the distribution around 1–3 Gyr still remains, only the

tail towards younger ages become slightly more pronounced.

We conclude, that our finding of a substantial population of intermediate-age GCs with ages of

order 1 – 3 Gyr and approximately solar metallicities in NGC 4570 is very robust, even under
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Figure A.9: Age distributions of our GC
sample under the assumption of a fixed
low metallicity [Fe/H] = −1.7 (upper
panel) and [Fe/H] = 0.0 (lower panel).
Bin sizes are the same as in Fig A.4, only
the two histograms for free and restricted
metallicities are plotted next to each other
to better reveal the differences.
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extreme test changes in metallicity.

A.5 Discussion

A.5.1 Formation scenarios for red-peak GCs

Our detection of a substantial population of 1 – 3 Gyr old GCs is most naturally explained in

terms of a merger or accretion event which involved significant amounts of gas and triggered

a strong starburst in which, together with some hitherto undetected population of field stars,

the presently observed GC formed. The star clusters we find have all the properties of GCs,

they are compact with half-light radii of order 3–7 pc and have masses in the range of typical

GC masses. Those clusters that we observe with ages of 1 – 3 Gyr certainly are only a small

fraction of all the star clusters formed in such an event. They have already survived the most

dangerous phase in their lives, the infant mortality and dynamical restructuring phase after the

first SNe have expelled the gas left-over from their formation. They probably have also survived

the violent relaxation phase that restructured the merging/accreted galaxies into the presently

observed S0. The sheer number of young GCs requires substantial gas masses involved and

their high metallicities indicate that it could not have been a minor accretion event involving

e.g. an SMC type galaxy swallowed by some major gas-free/poor E/S0/Sa type galaxy. Solar

metallicities in the ISM out of which the new GCs were formed require at least one Sbc- or Sb-
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type progenitor. Sa-type galaxies have higher metallicities, but lack the required amounts of gas

to fuel the starburst.

It is intriguing that the age we find for the young GCs agrees very well with the stellar population

age of ≤ 2 Gyr estimated by van den Bosch & Emsellem (1998) for the nuclear stellar disk in

the host galaxy (van den Bosch et al., 1998; van den Bosch & Emsellem, 1998; Scorza & van den

Bosch, 1998). Our detection of a substantial population of GCs does not, however, support the

internal bar instability scenario they favor for the formation of this nuclear stellar disk. Nuclear

stellar disks are in fact seen in dynamical simulations of galaxy mergers/accretion events (cf.

Bournaud et al., 2004; Springel & Hernquist, 2005), as well as in real merger remnants, e.g. in

Arp 214 and Arp 224 (Jog & Chitre, 2002). The fact that NGC 4570 does not feature any obvious

tidal tails can be understood as a consequence of its location in a high galaxy density region of

the Virgo cluster, where tidal tails are shredded as soon as they start to develop.

We hence suggest that the young GCs we detected and the nuclear stellar disk in NGC 4570 have

been formed by the same merger/accretion event.

A.6 Future prospects

HST NIC3 data would be very valuable in order to detect young GC closer to the centre of NGC

4570 and see whether the young GC system is more centrally concentrated than the old one or

not. Of equal value would be an extension of the SED to shorter wavelengths. As can also be

seen from Figure A.1 for both old and young clusters the U-band is both sensitive to ages and

metallicity and can help discriminate between both. However, imaging in further intermediate

band-passes would only be necessary for other galaxies containing dust (for further details see

Anders et al., 2004a). Spectroscopy, albeit challenging, would allow to confirm and eventually

further constrain the photometric ages, metallicities and masses for these young GCs, while

abundance ratios, e.g. of [α/Fe] could give further clues to the progenitor galaxies and to the

star cluster formation scenario.

A natural next step seem to combine our results from this GC analysis with a detailed analysis

of the stellar population across the main body of the galaxy to evaluate the contribution (and

location) of field stars from the age range of the young GCs. This could either be done on the

basis of multi-band imaging in a pixel-by-pixel analysis of the kind we did for the Tadpole and

Mice galaxies (de Grijs et al., 2003b) or analyzing the integrated spectrum with starburst models

as we have done for the ∼ 1 Gyr old merger remnant NGC 7252 (cf. Fritze & Gerhard, 1994a,b).
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A.7 Summary

On the basis of deep NTT-SOFI Ks− band imaging in conjunction with archival HST ACS deep

optical imaging we identified a substantial population of star clusters with ages in the range 1

– 3 Gyr and metallicities around solar in the Virgo S0 galaxy NGC 4570. All these clusters are

compact with half-light radii in the range 3–7 pc and have masses of order 105 M�. They have

successfully survived their infant mortality phase and, hence, merit to be called young GCs. The

clusters we detect in Ks make up an important fraction of the red peak of the bimodal GC optical

colour distribution reported by Peng et al. (2006) from the ACS Virgo Cluster Survey.

We performed a number of test that showed our results to be robust.

The ages we find for the young GCs agree well with stellar population ages previously deter-

mined for the nuclear stellar disk in NGC 4570. We suggest that both the nuclear stellar disk and

the young GC population have been formed in the same merger/accretion event. The presently

observed GCs certainly are only a small part of the originally formed star cluster population,

since only a small fraction of clusters usually survives until ages of ≥ 1 Gyr. The sheer num-

ber of young GCs suggests that the merger/accretion event must have involved substantial gas

masses, the high metallicity of the new GCs suggests that the gas involved in this event must

have been enriched at least to a level observed in present-day Sbc galaxies.

Our analysis has shown that GC populations are valuable tracers of their parent galaxy’s star

formation, chemical enrichment, and mass assembly histories.

Clearly further analyses, in particular of the stellar population across the main body of NGC

4570, are required before we fully understand the details of the scenario that gave rise to the

present-day Virgo S0 NGC 4570 with its nuclear stellar disk and young GCs.
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Abstract:

We present deep R, and narrow-band Hα images of Arp 78 obtained with the WIYN 3.5-m
telescope on Kitt Peak. GALEX observations had shown a very extended UV structure for this
system, reaching beyond the optical radius of Arp 78 and also beyond its previously known Hα−
radius. Our new Hα data now show agreement not only with the spatial extent of the near- and
far-UV maps, but also in terms of structural details. Star formation rates derived from L(Hα) and
L(FUV) are in agreement, showing that in this case the upper stellar IMF in the UV-bright outer
arm is relatively normal. The star forming sites in the outer arms are younger than ∼ 15 Myr
and massive enough to properly sample the IMF up to high masses.



204 App. B: The IMF in Arp 78

B.1 Introduction

A major surprise from early data taken with the GALEX ultraviolet explorer satellite was the

detection of extended near- and far-UV (NUV, FUV) emission in the extreme outer environment

of star-forming galaxies like M83 and NGC 4625 (Thilker et al., 2005; Gil de Paz et al., 2005).

Other examples include both apparently undisturbed spirals where the UV emission reveals

the inside-out growth of the stellar disk and galaxies that are surrounded by filaments and

substructure indicative of tidal encounters with active star formation (SF) going on within these

filaments.

An analysis 189 disk galaxies (types S0-Sm) within 40 Mpc from the GALEX Atlas of Nearby

Galaxies (Gil de Paz et al., 2007; Thilker et al., 2007) establishes that extended UV (XUV) galaxies

are surprisingly common, showing up in > 30% of this sample. Two classes of XUV galaxies

are defined from this sample. Arp 78 (NGC 772), that we study here, belongs to the XUV-type 1

class of objects, that make up ≥ 20% of the 40 Mpc sample and of which over 75% show optical

or H i morphological evidence for recent interactions or external perturbations. A prototype of

this class is M83.

These galaxies have structured, UV-bright, optically faint emission features beyond their optical

radii and in regions beyond the traditional SF threshold. The latter is defined as the surface

brightness contour corresponding to ΣSFR = 3× 10−4 M� yr−1kpc−2, evaluated at 1 kpc resolu-

tion. With Kennicutt (1998)’s star formation rate (SFR) calibration, this threshold corresponds to

µFUV = 27.25 ABmag/arcsec2 or µNUV = 27.35 ABmag/arcsec2. These UV surface brightness

thresholds correspond to an H i column density threshold for actively star-forming zones, as

predicted by (Schaye, 2004, see also Thilker et al., 2007), as well as to the Hα “edge” in galaxies

from the sample of Martin & Kennicutt (2001), as demonstrated by Boissier et al. (2007).

A great deal of discussion has focused on objects where UV emission was detected at larger

radii than Hα emission from H ii regions, as was the case for Arp 78. A variety of possible

explanations for this discrepancy have been put forward, e.g. a top-light IMF as a consequence

of a low level of SF with the resulting low star cluster masses precluding the formation of

ionising stars while still forming enough stars below the ionisation limit to account for the FUV

flux (Weidner & Kroupa, 2006; Boissier et al., 2007). Wholesale truncations of the IMF at the

upper end also have been suggested to simply cut off sources of photoionisation. This situation

could be attributed to the low gas column densities in the outskirts of galaxies. Under these

conditions fragmentation of a molecular cloud happens too quickly for it to grow to a point

where it can readily produce stars massive enough to ionise the surrounding gas (Krumholz &

McKee, 2008).

Alternatively, age effects have been discussed, in the sense that presumably episodic SF events
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ceased in the outskirts of some galaxies long enough in the past for H ii regions to have faded

below detection, but recently enough for the stellar UV flux to still be measurable (Zaritsky &

Christlein, 2007). Leakage of ionising photons in the very low density environment of these outer

regions provides yet another possible explanation, as this would act to decrease the observability

of photoionised regions (Oey & Kennicutt, 1997).

In some undisturbed face-on spirals, Ferguson et al. (1998b) were the first to show that very

deep Hα exposures revealed small and low-luminosity H ii regions beyond – and sometimes far

beyond – the optical radius, giving evidence for low-level SF activity going on beyond the optical

radius and interpreted as a signature of the inside-out growth of stellar disks. Another factor

then is the question of detectability of H ii regions versus the UV light of stars.

Here we present deep narrow band Hα imaging of Arp 78, including its outer regions, to check

whether we can find Hα flux from H ii counterparts to the XUV flux detected by GALEX. Our

approach involves comparing SFRs derived from L(Hα) with those based on L(FUV) assuming a

normal relationship between these two measures of massive stellar populations. In this way we

can check whether or not the outer regions of Arp 78 have normal young stellar populations.

B.2 Arp 78 – NGC 772

Arp 78 is a luminous (MB = −21.6) galaxy with pronounced spiral structure at an adopted

distance of 34Mpc (vr = 2472 km s−1). It is experiencing multiple interactions involving its spec-

troscopically confirmed low-luminosity (MB = −18.2) elliptical satellite, NGC 770, at a projected

distance of ∼ 30 kpc, plus two more companions (MB = −15.5 and −16.2, respectively) within

projected distances ∼ 400 kpc (Zaritsky et al., 1997).

The outer regions of Arp 78 feature an obviously disturbed, one-sided spiral arm-like mor-

phology that appears to be a tidally driven structure. The XUV emission in Arp 78 is clearly

associated with this region, as seen in Fig. B.1. Whether or not the stellar population age in the

filaments agrees with the nuclear starburst age of ∼ 2 Gyr as determined by Ganda et al. (2007)

and possibly even with the stellar population age of 3± 0.5 Gyr given by Geha et al. (2005) for

the counter-rotating disk in the companion NGC 770, are subjects of our ongoing more extensive

multi-band analysis.

B.3 Observations and Data reduction

Our optical observations were obtained using the WIYN 3.5 m telescope at Kitt Peak equipped

with the MiniMosaic camera. MiniMo consists of two 2K×4K CCD chips with a spatial sampling
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of 0.14 arcsec per pixel resulting in a field-of-view of 9.5× 9.5 arcmin. The seeing in the R-band

was ≈ 1.0′′ and ≈ 1.2′′ in Hα.

Data reduction consisted of overscan- and bias-subtraction, flat-fielding and cosmic ray removal.

We took special care to correct for slight gain variations between the two CCDs to yield a flat

background across the full FoV by multiplying them individually with correction factors ≈ 1

until sky-noise and background level were identical in all readout zones. The resulting frames

were then aligned by matching the positions of several stars in each frame and stacked; bad-

pixel-masks were used to remove bad pixels and the small gap between the detectors.

Obtaining a proper continuum subtraction requires that we match the point spread function

(PSF) in the R and Hα filters. We accomplished this by iteratively smoothing the R-band image

with a Gaussian of varying widths in the x- and y-directions until the PSFs in both filters matched

and residuals were acceptable. To remove the continuum contribution from the Hα image, we

measured the intensity of several stars in both the R-band and Hα frame, scaled the R-band so

that the stars have on average the same count rates in both R and Hα and subtracted this frame

from the Hα narrow-band exposure. The resulting scaling factor is in good agreement with

that derived from the widths of the filter transmission curves, but allows for a more accurate

continuum subtraction. Although the WIYN W16 narrow band filter also includes the [NII]

emission lines, we refer to the continuum subtracted data as Hα images since this is the dominant

source of emission line flux.

The GALEX images have been obtained from the GALEX science archive at the Space Telescope

Science Institute. To minimise offsets introduced by slightly differing coordinate systems we

aligned the FUV and NUV frames relative to the optical data by matching the positions of

several stars. The full width at half maximum of the FUV PSF is 4.2′′ sampled with 1.5′′ pixels

(Morrissey et al., 2007).

B.4 Results and Implications for IMF

Figure B.1 shows the FUV image of Arp 78 as gray-scale with WIYN narrow band Hα-brightness

contours overplotted. To suppress noise from the image we used adaptive and median-filtering

of the FUV image. The Hα contours, however, have been constructed from the original contin-

uum subtracted Hα frame to make sure this filtering does not induce artifacts into our results.

This Figure clearly shows a nearly perfect match between the FUV and H ii regions, as is ex-

pected if both the UV-flux and Hα flux are emitted by the young stars in the same regions where

the IMF extends up to high stellar masses. The close coincidence between FUV- and Hα emitting
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Figure B.1: The far-UV image of Arp 78 shown as gray-scales is overplotted with contour lines for the Hα emission. The
four circles mark positions of three background galaxies and a point source (probably an AGN or a hot star) that show
up in the FUV, but not in our Hα images.

regions both in the inner disk and in the outer tidal features is inconsistent with a scenario where

a low level of star formation in the XUV-disk leads to a low upper stellar mass cutoff of the IMF.

It also excludes timing models where the FUV-emitting star clusters are systematically too old

to produce significant Hα emission through photoionisation, i.e. older than ≈ 7 Myr.

Several small isolated regions seen in the UV GALEX images but lacking Hα emission can be

identified as background galaxies in our WIYN optical images; they are marked by encircled

crosses in Figure 1. The bright FUV source in the lower right part of the frame is the centre of

the companion galaxy NGC 770. There are a few horizontal structures visible in the Hα contour

map: these originate in chip defects or saturated stars that could not perfectly be corrected for

in the data reduction process.

B.4.1 Comparing SFRs from FUV/NUV and Hα

The existence of H ii regions could be consistent with models where the upper IMF is biased in

outer regions of galaxies, e.g. the Weidner & Kroupa (2006) models. To test for this possibility we

compare the SFRs obtained from the FUV and Hα luminosities using the empirical calibrations
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lines of the R-band image overplotted.

of Kennicutt (1998). Although those were obtained – and hence are strictly accurate only – for

close-to-solar metallicity, they provide a reasonable first estimate for the outer regions of Arp 78.

While central spectroscopy has revealed solar to slightly super-solar abundances (Ganda et al.,

2007), we expect the outer regions to have subsolar – albeit probably not dramatically subsolar –

abundances. If IMF biasing exists in the XUV regions, then we expect the SFR derived from the

Hα luminosity to be significantly lower than that based on FUV data.

To obtain the fluxes in the outer tidal filaments, we masked the outer ring-like structure (cf. Fig.

B.2) and obtained integrated count rates for this region from which we derive fluxes. Using the

Galactic extinction law from Valencic et al. (2004), we derive a value of AFUV = 0.63 mag at 1540

Å from the Galactic extinction E(B−V) = 0.073 mag towards Arp 78 (Schlegel et al., 1998). At the

distance of 34 Mpc towards Arp 78, this yields a FUV-luminosity of 2.5× 1039 erg s−1 cm−2 Å−1.

Based on uncertainties in the background determination and sky- and readout noise we estimate

that this luminosity is accurate to ≈ ±15%. From this FUV luminosity we estimate a SFR of

SFRFUV = (0.3± 0.05) M� yr−1 using the calibration from Kennicutt (1998).

To derive the Hα flux we use the calibration data from the R-band to convert the measured count

rate into physical units. Using an effective filter width of 72 Å for the WIYN-W16 filter yields

L(Hα) = 1041 erg s−1 for the regions marked in Fig. B.2, corresponding to a SFR in the tidal debris

region of SFRHα = 0.7 M� yr−1, also based on the Kennicutt (1998) calibration. In deriving this

SFR we reduced the observed flux in the W16 filter by 20% to account for [NII] emission in

the bandpass. The SFR from Hα is a factor ≈2 higher than the SFR we derive from the FUV

luminosity. From the noise in the continuum-subtracted Hα image and uncertainties in the flux

calibration we estimate an error for the Hα-derived SFR of ±30 % or ∆SFR = ±0.2 M� yr−1.

These results reveal a comparatively normal Hα-to-FUV flux ratio, supporting the presence of a
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normal high mass stellar IMF in this case.

The factor ≈ 2 difference in the ratio SFRHα/SFRFUV can be caused by two effects: first, we

only corrected for Galactic foreground extinction and not for internal extinction in Arp 78 in

our derivation of the FUV luminosity. Even small amounts of dust inside the FUV-emitting

regions will easily absorb some FUV radiation, so that the intrinsic, dust-corrected luminosity

– and with that the true FUV-based SFR – is certainly somewhat higher. Second, as mentioned

above, the calibration for the SFR derived from Hα is only valid for solar metallicity galaxies,

while the outskirts of Arp 78 are likely to have somewhat sub-solar metallicities. Investigating

the metallicity dependence of SFR indicators with our GALEV models, we found that SFRs in

low metallicity regions are overestimated by factors up to 2 if derived from L(Hα) and by up to

50 % if calculated from L(FUV) using empirical calibrations obtained for close-to-solar metallicity

environments (cf. Bicker & Fritze, 2005). Accounting for the probably subsolar metallicities in

the outer regions of Arp 78 thus acts to bring our SFR estimates from FUV and Hα into closer

agreement.

After allowing for these two effects, we consider the SFR derived from Hα and from the FUV lu-

minosity to be in acceptable concordance, and estimate it to be SFR(outer) ≈ (0.5± 0.2) M� yr−1

across the extended tidal structures in Arp 78 outlined in Fig. 2. This agreement further rein-

forces our conclusion that the average upper mass stellar IMF in this region is normal.

B.4.2 Extended UV Emission and the IMF in Arp 78

The UV-bright outer arm of Arp 78 contains several H ii regions with L(Hα) ≥ 1038 erg s−1.

Photoionisation requires some component of the region to have an age of ≤ 7− 9 Myr and for a

normal mass function the inferred young stellar masses in these regions are > 104 M�. Hence,

these young clusters are sufficiently massive to properly sample the IMF up to high masses

(Weidner & Kroupa, 2006; Boissier et al., 2007).

Why then is the XUV outer arm structure so obvious in Arp 78 while the optical counterpart

is faint? This appears to be an effect similar to what is observed in the context of Tidal Dwarf

Galaxies, where the mass and the NIR light can be dominated by stars inherited from the spiral

disk while the short-wavelength light is due to stars formed in a major outer SF event triggered

by the ongoing interactions in this system.
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B.5 Summary

Deep narrow-band Hα imaging from the WIYN 3.5-m telescope on Kitt Peak allowed us to detect

Hα emission in good coincidence with the extended GALEX FUV structure all across the inner

part and, in particular, across the XUV extended outer structures of Arp 78, that very probably

are of tidal origin. We calculated the SFR across these outer structures and found a value of

0.5± 0.2 M� yr−1 from both the FUV and Hα luminosities. The agreement between these two

measures points to a normal upper stellar upper IMF in this system. We also find the star

forming regions in this system to be younger than ∼ 15 Myr and sufficiently massive to properly

sample the IMF up to high masses.

The XUV-strong and optically faint outer structures of Arp 78 are consistent with ongoing SF

superimposed on an older stellar population torn out from the spiral disk by tidal forces. A

detailed investigation of stellar population ages and metallicities across this galaxy will be the

subject of a forthcoming paper.
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In the following we will present the workings of galev in a more vivid way by guiding the

reader through a series of steps. We give examples for the input physics galev uses and show

how this is used throughout the process of modelling a galaxy.

C.1 General steps

In the first step we present how one gets from isochrones, a stellar IMF, spectral library, and

atomic physics to an integrated isochrone spectrum. For this example we choose to work with

isochrones from the Padova group, a Salpeter-IMF from 0.1M� to 100M� and stellar spectra

from the Lejeune library, all using solar metallicity.

C.1.1 Step 1: Choose set of isochrones

Fig. C.1 shows solar-metallicity isochrones for three different ages of 4 Myr, 100 Myr and 1 Gyr

as a colour-magnitude diagram. For very young ages the main sequence reaches up to high

masses and hence very high luminosities ≈ −10 mag. For the later stages the red giant branch

(RGB) at (B−V) ≈ 1 . . . 1.4 is clearly visible and also the asymptotic giant branch (AGB). Note

that stars on the AGB can reach extremely red colours of (B−V) ≈ 4 mag and at the same time

get very bright in the NIR (MK ∼ −10 mag) during the thermal pulsation (TP) phase.
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Figure C.1: Solar metallicity isochrones
from the Padova group for three different
ages of 4 Myr, 100 Myr and 1 Gyr
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Figure C.2: Two examples of initial mass
functions, here from Kroupa (2001) and
Salpeter (1955)
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C.1.2 Step 2: Select Initial Mass Function

In a second step we have to choose a parameterisation for the number of stars as function of their

mass. Fig. C.2 shows two common IMFs, the Salpeter and Kroupa IMFs. For masses ≥ 1M�
both predict roughly comparable number of stars, but they differ in the low mass regime ≤ 1M�.

This will not only affect mass-to-light ratios, but also have an impact on the resulting spectra

and in particular the chemical enrichment, since fewer low-mass stars also means that less mass

gets locked up in long-lived stars.

C.1.3 Step 3: Populate isochrones with stars

With both isochrones and IMF at hand we can now populate the isochrones with stars taken

from an IMF. For each mass point on the isochrone the IMF tells us how many stars were being

formed with this mass. The results are shown in Fig. C.3, where we also added some scatter

around the individual points to give the artificial colour-magnitude diagram a smoother and

more realistic appearance. We also added at least one star to each point to bring out all phases

of stellar evolution. However, in reality, this might not be the case, since some phases, e.g for

very young and extremely hot white dwarfs last for a very short timescale only.

C.1.4 Step 4: Assign a spectrum to each star

Next we assign a spectrum to each star in the colour-magnitude diagram. The parameters

required for this are either directly given in the isochrones (e.g. the effective temperature Teff)

or can be derived from other parameters (e.g. the surface gravity log g can be calculated from
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Figure C.3: Synthetic colour magnitude
diagram where each point from the
isochrone is assigned a numbers of stars
based on the IMF. We added some scatter
around each point to produce a smoother
appearance.
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Figure C.4: Sample spectra from the Leje-
une stellar library for stars with logg = 4.0
and Teff = (20000, 10000, 5000, 2000)K.

the stellar mass, its bolometric luminosity and effective temperature). In Fig. C.4 we show four

sample spectra for stars with identical log g = 4.0, but temperatures ranging from 20000 K down

to 2000 K. Hot stars have a smooth slope and are bright in the UV. Stars with Teff ≈ 10000 K

have prominent Balmer absorption lines characteristic for spectral type A stars. Cool stars are

dominated by broad molecular absorption bands and only emit at long wavelengths. Not all

stellar parameters are directly covered by the library, all other values have to be interpolated

between neighbouring points in the library. Is is therefore crucial for the stellar library to cover

the full parameter range.
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Figure C.5: Integrated starlight for the
three isochrones shown in Fig. C.1.
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C.1.5 Step 5: Integrate spectra of all stars

To create stellar isochrone spectra we now integrate the light of all stars. Special care has to

be taken to account for the different luminosities of stars at their respective stages of evolution.

In Fig. C.5 we show spectra for the same ages discussed above, 4 Myr, 100 Myr, and 1 Gyr.

The youngest spectrum is almost completely dominated by the hottest and brightest high-mass

stars that also dominate part of the 100 Myr spectrum. For this spectrum the highest-mass stars

have already exploded as supernovae and with them the flux in the FUV already has decreased

considerably. In the optical the 4000Å break starts to appear, becoming stronger with time. After

1 Gyr there is little UV flux remaining, the spectrum is now dominated by stars with lower

masses ≈ 2M�.

C.1.6 Step 6: Compute gaseous line and continuum emission

Until now we have only dealt with stellar light. However, as mentioned earlier, at young ages

isochrones contain large contributions from high mass stars. These emit a large fraction of

their light in the UV and also produce significant numbers of photons energetic enough to

ionise hydrogen. The energy injected into the surrounding interstellar medium produces both

emission lines and also continuum emission. The detailed mechanisms of this are discussed in

Sect. 2.3.3 and shown in Fig. C.6. Note that while the strength of the heavy element emission

lines depends on the metallicity of the gas, the strength of the continuum emission and hydrogen

emission lines purely depends on the ionising photon flux.
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Figure C.6: Gaseous emission spectrum
for solar metallicity. Shown in blue is the
continuum emission, and continuum and
line emission in red.
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Figure C.7: Integrated isochrone spectra
for the same isochrones shown in Fig. C.1
and Fig. C.5, including both stellar and
gaseous emission.

C.1.7 Step 7: Add gas emission to stellar spectrum

For each isochrone we now compute the gaseous emission spectrum based on the metallicity and

ionising photon flux derived from isochrones and IMF. Since the latter heavily depends on the

age of the isochrone so does the strength of the gaseous emission. In Fig. C.7 we show the same

spectra as in Fig. C.5, but now with gaseous emission included. For the first spectrum at an age

of 4 Myr the emission lines clearly stand out in the optical. However, for the later stages there

are no changes compared to the purely stellar spectra, since only stars with masses & 20M� and

hence very short lifetimes . 10 Myr produce the majority of the ionising flux.

In galev those previous steps are repeated for all metallicities and ages available from the

isochrone set, yielding a full set of isochrone spectra including both stellar and gaseous emission.
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Figure C.8: Example for contributing
isochrone spectra during interpolation in
age.
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C.2 Additional steps for star clusters

Continuing from the library of isochrone spectra galev can now compute the finer grid re-

quired for the study of star clusters.

C.2.1 Step 8: Interpolate between ages given by the isochrones

The time resolution offered by the isochrones in general only spans a relatively coarse grid with

logarithmic age spacing. However, it is advantageous to create a grid with smaller and linear

age steps. This can be done by interpolating additional ages to fill the gaps in the isochrone grid.

Since spectra vary roughly linearly with logarithmic time, i.e. changes are larger at small ages

and small at large ages we use this as basis for our algorithm. In Fig. C.8 we show two isochrone

spectra for ages of log(t) = 6.7 and log(t) = 6.9 and the resulting spectrum for log(t) = 6.85.

The resulting spectrum was computed by Spec(log(t) = 6.85) = 0.25× (Spec(log(t) = 6.7) +

3× Spec(log(t) = 6.9).

To obtain a full grid to be used e.g. for age-dating star clusters one has to repeat this proce-

dure for each required time step and each metallicity. The steps involved with applying dust

extinction and computation of magnitudes from spectra is explained in Steps 11 and 14 below.

C.3 Additional steps for galaxies

Galaxies are completely different from star clusters since they contain multiple stellar popula-

tions, generally covering a range of ages and metallicities. We explain the basic steps dealing
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with multiple populations based on a toy-model of a galaxy made from only two populations

with different ages and metallicities. The subsequent explanations use the model of an undis-

turbed elliptical galaxy.

C.3.1 Step 8: Compute initial abundances for next generation

To derive the chemical evolution of galaxies we have to know four things: 1) The total mass of

the galaxy, including both the mass of stars and gas. 2) The star formation history (SFH), i.e.

how many stars are formed at each particular time. 3) The life times of the stars formed. This in

combination with the SFH yields some form of star death record. And we have to know 4) the

end products of each star, i.e. the mass of its remnant, and the mass of gas and heavy elements

returned to the surrounding ISM. For each time we then have to keep track of the masses of stars,

gas and metals in the gas. All those quantities are changed by star formation and the return of

gas and heavy elements from dying stars. The ratio of metals to gas is the crucial factor since it

determines both the spectra and lifetimes of the newly formed stars.

C.3.2 Step 9: Interpolate between ages AND metallicities

For all galaxies with an extended SFH we will have stellar populations not agreeing with the

coarse grid given by the isochrones. We therefore have to interpolate between isochrone spectra

of different ages and also different metallicities. The details of this process are described in the

context of star clusters above and are also shown in Fig. C.8.

C.3.3 Step 10: Add up spectra weighted with SFH

To ease the understanding how galev assembles a galaxy spectrum from the individual spectra

of each of its constituent populations, we first consider a toy model of a galaxy made from

only two populations. Both populations are described by intervals of 1 Myr duration each,

occuring at an age of 100 and 200 Myr and forming stars at a rate of 100 M� yr−1 and 50 M� yr−1,

respectively (see Fig. C.9). Both intervals are short compared to the age of the youngest isochrone

so that they each can be described as a population of one age. We further assume that the earlier

population (Burst 1) is formed with a metallicity of [Fe/H] = −1.7 or 1/50Z�, and the second

(Burst 2) with a metallicity of [Fe/H] = −0.7 or 1/5Z�.

We will now show how to derive the spectrum of our toy-galaxy at two ages of 300 Myr and

1 Gyr. For each timestep t one needs to derive the ages τ and metallicities of all populations
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Figure C.9: For our toy-model we construct
a very primitive star formation history
of 2 bursts, with SFRs of 100 M� yr1 and
50 M� yr1, each lasting 106 years.
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formed prior to this time. Those are then weighted by the SFR at their respective formation

time SFR(t− ø) multiplied with the length of a time step. Those are then added up to yield the

galaxy spectrum. For our toy galaxy at an age of 300 Myr we know that Burst 1 has metallicity

[Fe/H] = −1.7 and an age of 200 Myr. Burst 2 has metallicity [Fe/H] = −0.7 and an age of 100

Myr. The resulting spectrum thus can be constructed by added up those two isochrone spectra.

The resulting spectrum is shown in the upper panel of Fig. C.10.

The spectra for all other times are created in a similar way. Metallicities for each population stay

the same, while ages increase with time. The resulting spectrum of our toy-model galaxy at an

age of 1 Gyr is shown in the bottom panel of Fig. C.10

In the following we will leave our toy-model galaxy and instead show the remaining steps

that are necessary to derive magnitudes for an elliptical galaxy with a small amount of dust at

redshift z = 3.

C.3.4 Step 11: Apply evolutionary correction

Since we want to model the galaxy at a cosmologically significant redshift of z = 3 we have to

take evolutionary corrections into account, i.e. we observe the galaxy at an earlier evolutionary

state. We therefore have to know the age of the galaxy at this redshift. In Fig. C.11 we show the

redshift-galaxy age relation for a small range of cosmological parameters. It is obvious that the

density parameters ΩM and ΩΛ influence the solution, but also the formation redshift zform, the

redshift at which the galaxy started forming stars. The impact of those evolutionary corrections

can be seen in Fig. C.14. The first row shows the galaxy at redshift z=0 with an age of ≈ 13 Gyr.

The second row shows the galaxy at its evolutionary state at z = 3; the galaxy at redshift 3

started forming stars only ≈ 1.5 Gyr earlier.
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Figure C.10: Interpolated isochrone spectra
for each burst and the resulting galaxy
spectrum, for galaxy ages of 300 Myr (top
panel) and 1 Gyr (bottom panel).
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Figure C.12: Extinction curves from
Calzetti and Cardelli. Both show very
little transmission at short wavelengths
indicating that most of the light gets
absorbed.
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C.3.5 Step 12: Apply extinction

In a next step we apply the attenuation due to interstellar dust. For our example we choose

the Calzetti et al. (1994) extinction law (see Fig. C.12 and choose an intermediate degree of

extinction, E(B-V)=0.2. For comparison we also show the dust attenuation curve of Cardelli et al.

(1989). Both extinction curves have in common that the transmission, i.e. the fraction of light that

remains unabsorbed, drops towards shorter wavelengths, leading to a reddening of the galaxy

light. The results on the spectrum can be seen from the difference between the second and third

row in Fig. C.14

C.3.6 Step 13: Redshift spectrum

The spectrum now has to redshifted by a factor (1+z). Note that also the flux has to reduced by

the same factor (1+z) to properly account for the cosmic expansion.

C.3.7 Step 14: Apply intergalactic attenuation curve

Due to the high redshift at which we observe our galaxy we have to correct for intergalactic

absorption due to intervening neutral hydrogen clouds. These absorb light shortwards of the

Lyman-α line (1216 Å) and hence reduce the flux in this region. Fig. C.13 shows the transmission

of the IGM as function of observed frame wavelength for sources at different redshifts z = 1 . . . 6.

For a galaxy at redshift 3 this means that ≈ 30% of the light between the Lyman-break (912 Å)

and the Lyman-α line is absorbed, while shortwards of the Lyman-break essential all flux is

absorbed (hence the name Lyman-break). Fig. C.14 shows in the two bottom rows the spectrum

with (5th row) and without (4th row) this attenuation.
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Figure C.13: Transmission of the inter-
galactic medium as function of observed
frame wavelength for sources at different
redshifts.

All the previously mentioned effects are summarised in Fig. C.14. The first row shows the

spectrum of the galaxy at redshift z = 0 at an age of 13 Gyr. The second row still is at z = 0,

but at an evolutionary state already corresponding to z = 3. The following panel shows the

spectrum with a reddening of E(B − V) = 0.2 mag; Here most of the far-UV flux is already

absorbed by dust. The fourth row shows the spectrum redshifted to z = 3 and the last row also

takes intergalactic attenuation into account.

C.3.8 Step 15: Convolve with filter response curve to compute magnitudes

We can now convolve the final spectrum with filter response curves. Therefore each point in

the spectrum is weighted with the relative filter response at the corresponding wavelengths and

then integrated over all wavelengths. To convert the resulting fluxes into observable magnitudes

we have to apply zero-points according to the requested magnitude system, e.g. Vega or AB.

In Fig. C.15 we show a wide selection of currently available filters from different space and

ground-based telescopes.

C.3.9 Step 16: Add distance modulus

In a very last step we can convert the absolute magnitudes obtained with the filters into apparent

magnitudes. This is done by simply adding the bolometric distance modulus for the particular

redshift. In Fig. C.16 we show the evolution of the distance modulus with redshift for a small

selection of possible cosmological parameter sets. For the previously studied galaxy at redshift

z = 3 we have to add a distance modulus of 47 mag.
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Figure C.14: Galaxy spectrum of an
elliptical galaxy at different stages of
the modelling process. Each following
spectrum includes all effects shown above.
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Figure C.15: Selection of the filters cur-
rently offered by galev, ranging from
the far-UV to near-infrared.
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D.1 Abstracts of co-authored papers

D.1.1 The role of E+A and post-starburst galaxies

I. Models and model results

Authors: M. A. Falkenberg, R. Kotulla, and U. Fritze

published in Monthly Notices of the Royal Astronomical Society 397, 1940–1953 (2009)

Different compositions of galaxy types in the field in comparison to galaxy clusters as described

by the morphology-density relation in the local universe is interpreted as a result of transforma-

tion processes from late- to early-type galaxies. This interpretation is supported by the Butcher-

Oemler effect. We investigate E+A galaxies as an intermediate state between late-type galaxies

in low density environments and early-type galaxies in high density environment to constrain

the possible transformation processes.

For this purpose we model a grid of post-starburst galaxies by inducing a burst and/ or a halting

of star formation on the normal evolution of spiral galaxies with our galaxy evolution code

GALEV. From our models we find that the common E+A criteria exclude a significant number

of post-starburst galaxies and propose that comparing their spectral energy distributions leads to

a more sufficient method to investigate post-starburst galaxies. We predict that a higher number

of E+A galaxies in the early universe can not be ascribed solely to a higher number of starburst,

but is a result of a lower metallicity and a higher burst strength due to more gas content of the

galaxies in the early universe. We find that even galaxies with a normal evolution without a

starburst have a Hδ-strong phase at early galaxy ages.

D.1.2 The role of E+A and post-starburst galaxies

II. Spectral energy distributions and comparison with observations

Authors: M. A. Falkenberg, R. Kotulla, and U. Fritze

published in Monthly Notices of the Royal Astronomical Society 397, 1954–1965 (2009)

In a previous paper (Falkenberg, Kotulla, & Fritze, 2009a, see Sect. D.1.1 for an abstract) we

have shown that the classical definition of E+A galaxies excludes a significant number of post-

starburst galaxies. We suggested that analysing broad-band spectral energy distributions (SEDs)

is a more comprehensive method to select and distinguish post-starburst galaxies than the clas-

sical definition of measuring equivalent widths of the Hδ and [O ii] lines.
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In this paper we will carefully investigate this new method and evaluate it by comparing our

model grid of post-starburst galaxies to observed E+A galaxies from the MORPHS catalog.

In a first part we investigate the UV/U-optical-NIR SEDs of a large variety in terms of progenitor

galaxies, burst strengths and timescales of post-starburst models and compare them to undis-

turbed spiral, S0 and E galaxies as well as to galaxies in their starburst phase. In a second part

we compare our post-starburst models with the observed E+A galaxies in terms of Lick indices,

luminosities and colours. We then use the new method of comparing the model SEDs with SEDs

of the observed E+A galaxies.

We find that the post-starburst models can be distinguished from undisturbed spiral, S0 and

E galaxies and galaxies in their starburst phase on the basis of their SEDs. It is even possible

to distinguish most of the different post-starburst by their SEDs. From the comparison with

observations we find that all observed E+A galaxies from the MORPHS catalog can be matched

by our models. However only models with short decline timescales for the star formation rate

are possible scenarios for the observed E+A galaxies in agreement with our results from the first

paper (see Falkenberg, Kotulla, & Fritze, 2009a).

D.1.3 The First Generation of Virgo Cluster Dwarf Elliptical Galaxies?

Authors: T. Lisker, J. Janz, G. Hensler, S. Kim, S.-C. Rey, S. Weinmann, C. Mastropietro, O.

Hielscher, S. Paudel, R. Kotulla

published in The Astrophysical Journal Letters, 706, L124–L128 (2009)

In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed

through infall and transformation of late-type progenitors, we search for an imprint of such an

infall history in the oldest, most centrally concentrated dE subclass of the Virgo cluster: the

nucleated dEs that show no signatures of disks or central residual star formation. We select

dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their

line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to

have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs

are nearly round. Likewise, when subdividing the central dEs by their projected axial ratio into

flat and round ones, their distributions of line-of-sight velocities differ significantly: the flat dEs

have a broad, possibly two-peaked distribution, whereas the round dEs show a narrow single

peak. We conclude that the round dEs probably are on circularized orbits, while the flat dEs

are still on more eccentric or radial orbits typical for an infalling population. In this picture, the

round dEs would have resided in the cluster already for a long time, or would even be a cluster-

born species, explaining their nearly circular orbits. They would thus be the first generation of
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Virgo cluster dEs. Their shape could be caused by dynamical heating through repeated tidal

interactions. Further investigations through stellar population measurements and studies of

simulated galaxy clusters would be desirable to obtain definite conclusions on their origin.

D.1.4 PHAT: PHoto-z Accuracy Testing

Authors: H. Hildebrandt, S. Arnouts, P. Capak, L. A. Moustakas, C. Wolf, F. B. Abdalla, R. J.

Assef, M. Banerji, N. Benítez, G. B. Brammer, T. Budavári, S. Carliles, D. Coe, T. Dahlen, R.

Feldmann, D. Gerdes, B. Gillis, O. Ilbert, R. Kotulla, O. Lahav, I. H. Li, J.-M. Miralles, N.

Purger, S. Schmidt, and J. Singal

Astronomy & Astrophysics, in press

Context. Photometric redshifts (photo-z’s) have become an essential tool in extragalactic astron-

omy. Many current and upcoming observing programmes require great accuracy of photo-z’s to

reach their scientific goals.

Aims. Here we introduce PHAT, the PHoto-z Accuracy Testing programme, an international

initiative to test and compare different methods of photo-z estimation.

Methods. Two different test environments are set up, one (PHAT0) based on simulations to test

the basic functionality of the different photo-z codes, and another one (PHAT1) based on data

from the GOODS survey including 18-band photometry and ≈ 2 000 spectroscopic redshifts.

Results. The accuracy of the different methods is expressed and ranked by the global photo-

z bias, scatter, and outlier rates. While most methods agree very well on PHAT0 there are

differences in the handling of the Lyman-α forest for higher redshifts. Furthermore, different

methods produce photo-z scatters that can differ by up to a factor of two even in this idealised

case. A larger spread in accuracy is found for PHAT1. Few methods benefit from the addi-

tion of mid-IR photometry. The accuracy of the other methods is unaffected or suffers when

IRAC data are included. Remaining biases and systematic effects can be explained by short-

comings in the different template sets (especially in the mid-IR) and the use of priors on the

one hand and an insufficient training set on the other hand. Some strategies to overcome these

problems are identified by comparing the methods in detail. Scatters of 4− 8% in ∆z/(1 + z)

were obtained, consistent with other studies. However, somewhat larger outlier rates (> 7.5%

with ∆z = (1 + z) > 0.15; > 4.5% after cleaning) are found for all codes that can only partly

be explained by AGN or issues in the photometry or the spec-z catalogue. Some outliers were

probably missed in comparisons of photo-zâĂŹs to other, less complete spectroscopic surveys

in the past. There is a general trend that empirical codes produce smaller biases than template-

based codes.
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Conclusions. The systematic, quantitative comparison of different photo-z codes presented here

is a snapshot of the current state-ofthe- art of photo-z estimation and sets a standard for the

assessment of photo-z accuracy in the future. The rather large outlier rates reported here for

PHAT1 on real data should be investigated further since they are most probably also present

(and possibly hidden) in many other studies. The test data sets are publicly available and can be

used to compare new, upcoming methods to established ones and help in guiding future photo-z

method development.
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E. W., et al. 2004, ApJS, 153, 223

Côté, P., Piatek, S., Ferrarese, L., Jordán, A., Merritt, D., Peng, E. W., Haşegan, M., Blakeslee, J. P.,
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Dotter, A., Chaboyer, B., Jevremović, D., Baron, E., Ferguson, J. W., Sarajedini, A., Anderson, J.

2007, AJ, 134, 376

Dressler, A., Oemler, A. J., Poggianti, B. M., Smail, I., Trager, S., Shectman, S. A., Couch, W. J.,

Ellis, R. S. 2004, ApJ, 617, 867

Dressler, A., Smail, I., Poggianti, B. M., Butcher, H., Couch, W. J., Ellis, R. S., Oemler, A. J. 1999,

ApJS, 122, 51

Drory, N., Bundy, K., Leauthaud, A., Scoville, N., Capak, P., Ilbert, O., Kartaltepe, J. S., Kneib,

J. P., et al. 2009, ApJ, 707, 1595

Drory, N., Salvato, M., Gabasch, A., Bender, R., Hopp, U., Feulner, G., Pannella, M. 2005, ApJ,

619, L131

http://adsabs.harvard.edu/abs/2005AJ....130..116D
http://adsabs.harvard.edu/abs/2006MNRAS.366..295D
http://adsabs.harvard.edu/abs/2003MNRAS.342..259D
http://adsabs.harvard.edu/abs/2003NewA....8..155D
http://adsabs.harvard.edu/abs/2003NewA....8..155D
http://adsabs.harvard.edu/abs/2007MNRAS.375....2D
http://adsabs.harvard.edu/abs/2004MNRAS.349.1101D
http://adsabs.harvard.edu/abs/2009MNRAS.400...68D
http://adsabs.harvard.edu/abs/2006MNRAS.366..499D
http://adsabs.harvard.edu/abs/2004ApJ...608L..29D
http://adsabs.harvard.edu/abs/1959HDP....53..275D
http://adsabs.harvard.edu/abs/1963ApJS....8...31D
http://adsabs.harvard.edu/abs/1995yCat.7155....0D
http://adsabs.harvard.edu/abs/1999ApJ...519..610D
http://ukads.nottingham.ac.uk/abs/2007ApJ...670..379D
http://adsabs.harvard.edu/abs/2005MNRAS.361..525D
http://adsabs.harvard.edu/abs/2010AJ....139.1628D
http://ukads.nottingham.ac.uk/abs/2005ApJ...619..755D
http://ukads.nottingham.ac.uk/abs/2007AJ....134..376D
http://adsabs.harvard.edu/abs/2004ApJ...617..867D
http://adsabs.harvard.edu/abs/1999ApJS..122...51D
http://adsabs.harvard.edu/abs/2009ApJ...707.1595D
http://adsabs.harvard.edu/abs/2005ApJ...619L.131D
http://adsabs.harvard.edu/abs/2005ApJ...619L.131D


Bibliography 239

Dye, S., Eales, S. A., Aretxaga, I., Serjeant, S., Dunlop, J. S., Babbedge, T. S. R., Chapman, S. C.,

Cirasuolo, M., et al. 2008, MNRAS, 386, 1107

Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748

Eisenstein, D. J., Annis, J., Gunn, J. E., Szalay, A. S., Connolly, A. J., Nichol, R. C., Bahcall, N. A.,

Bernardi, M., et al. 2001, AJ, 122, 2267

Eisenstein, D. J., Hogg, D. W., Fukugita, M., Nakamura, O., Bernardi, M., Finkbeiner, D. P.,

Schlegel, D. J., Brinkmann, J., et al. 2003, ApJ, 585, 694

Eisenstein, D. J., Zehavi, I., Hogg, D. W., Scoccimarro, R., Blanton, M. R., Nichol, R. C., Scranton,

R., Seo, H.-J., et al. 2005, ApJ, 633, 560

Ellingson, E., Lin, H., Yee, H. K. C., & Carlberg, R. G. 2001, ApJ, 547, 609

Elston, R., Rieke, G. H., & Rieke, M. J. 1988, ApJ, 331, L77

Elston, R., Rieke, M. J., & Rieke, G. H. 1989, ApJ, 341, 80

Erb, D. K. 2008, ApJ, 674, 151

Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., Adelberger, K. L. 2006a, ApJ,

644, 813

Erb, D. K., Shapley, A. E., Steidel, C. C., Pettini, M., Adelberger, K. L., Hunt, M. P., Moorwood,

A. F. M., Cuby, J.-G. 2003, ApJ, 591, 101

Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., Reddy, N. A., Adelberger, K. L. 2006b, ApJ,

646, 107

Ercolano, B., Barlow, M. J., Storey, P. J., & Liu, X.-W. 2003, MNRAS, 340, 1136

Ercolano, B. & Storey, P. J. 2006, MNRAS, 372, 1875

Eskridge, P. B., Frogel, J. A., Pogge, R. W., Quillen, A. C., Berlind, A. A., Davies, R. L., DePoy,

D. L., Gilbert, K. M., et al. 2002, ApJS, 143, 73

Faber, S. M. & Gallagher, J. S. 1979, ARA&A, 17, 135

Faber, S. M., Willmer, C. N. A., Wolf, C., Koo, D. C., Weiner, B. J., Newman, J. A., Im, M., Coil,

A. L., et al. 2007, ApJ, 665, 265

Falkenberg, M. A., Kotulla, R., & Fritze, U. 2009a, MNRAS, 397, 1940

Falkenberg, M. A., Kotulla, R., & Fritze, U. 2009b, MNRAS, 397, 1954

Fan, X., Carilli, C. L., & Keating, B. 2006, ARA&A, 44, 415

Fan, X., Strauss, M. A., Schneider, D. P., Gunn, J. E., Lupton, R. H., Becker, R. H., Davis, M.,

Newman, J. A., et al. 2001, AJ, 121, 54

Feldmann, R., Carollo, C. M., Porciani, C., Lilly, S. J., Capak, P., Taniguchi, Y., Le Fèvre, O.,

Renzini, A., et al. 2006, MNRAS, 372, 565

Ferguson, A. M. N., Gallagher, J. S., & Wyse, R. F. G. 1998a, AJ, 116, 673

Ferguson, A. M. N., Wyse, R. F. G., Gallagher, J. S., & Hunter, D. A. 1998b, ApJ, 506, L19

Ferguson, A. M. N., Wyse, R. F. G., Gallagher, III, J. S., & Hunter, D. A. 1996, AJ, 111, 2265

http://adsabs.harvard.edu/abs/2008MNRAS.386.1107D
http://adsabs.harvard.edu/abs/1962ApJ...136..748E
http://adsabs.harvard.edu/abs/2001AJ....122.2267E
http://adsabs.harvard.edu/abs/2003ApJ...585..694E
http://adsabs.harvard.edu/abs/2005ApJ...633..560E
http://adsabs.harvard.edu/abs/2001ApJ...547..609E
http://adsabs.harvard.edu/abs/1988ApJ...331L..77E
http://adsabs.harvard.edu/abs/1989ApJ...341...80E
http://adsabs.harvard.edu/abs/2008ApJ...674..151E
http://adsabs.harvard.edu/abs/2006ApJ...644..813E
http://adsabs.harvard.edu/abs/2006ApJ...644..813E
http://adsabs.harvard.edu/abs/2003ApJ...591..101E
http://adsabs.harvard.edu/abs/2006ApJ...646..107E
http://adsabs.harvard.edu/abs/2006ApJ...646..107E
http://ukads.nottingham.ac.uk/abs/2003MNRAS.340.1136E
http://adsabs.harvard.edu/abs/2006MNRAS.372.1875E
http://adsabs.harvard.edu/abs/2002ApJS..143...73E
http://adsabs.harvard.edu/abs/1979ARA%26A..17..135F
http://adsabs.harvard.edu/abs/2007ApJ...665..265F
http://adsabs.harvard.edu/abs/2009MNRAS.397.1940F
http://adsabs.harvard.edu/abs/2009MNRAS.397.1954F
http://adsabs.harvard.edu/abs/2006ARA%26A..44..415F
http://adsabs.harvard.edu/abs/2001AJ....121...54F
http://ads.ari.uni-heidelberg.de/abs/2006MNRAS.372..565F
http://cdsads.u-strasbg.fr/abs/1998AJ....116..673F
http://ads.ari.uni-heidelberg.de/abs/1998ApJ...506L..19F
http://ads.ari.uni-heidelberg.de/abs/1996AJ....111.2265F


240 Bibliography

Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., Verner, E. M. 1998,

PASP, 110, 761

Fernández-Soto, A., Lanzetta, K. M., Chen, H., Pascarelle, S. M., & Yahata, N. 2001, ApJS, 135, 41

Fernández-Soto, A., Lanzetta, K. M., & Chen, H.-W. 2003, MNRAS, 342, 1215

Fernández-Soto, A., Lanzetta, K. M., & Yahil, A. 1999, ApJ, 513, 34

Ferrarese, L., Côté, P., Jordán, A., Peng, E. W., Blakeslee, J. P., Piatek, S., Mei, S., Merritt, D., et al.

2006, ApJS, 164, 334

Finoguenov, A., Guzzo, L., Hasinger, G., Scoville, N. Z., Aussel, H., Böhringer, H., Brusa, M.,

Capak, P., et al. 2007, ApJS, 172, 182

Fioc, M. & Rocca-Volmerange, B. 1997, A&A, 326, 950

Fontanot, F., De Lucia, G., Monaco, P., Somerville, R. S., & Santini, P. 2009, MNRAS, 397, 1776

Forbes, D. A., Brodie, J. P., & Grillmair, C. J. 1997, AJ, 113, 1652

Förster-Schreiber, N. M., Franx, M., Labbé, I., Rudnick, G., van Dokkum, P. G., Illingworth, G. D.,

Kuijken, K., Moorwood, A. F. M., et al. 2006, AJ, 131, 1891

Förster-Schreiber, N. M., van Dokkum, P. G., Franx, M., Labbé, I., Rudnick, G., Daddi, E., Illing-

worth, G. D., Kriek, M., et al. 2004, ApJ, 616, 40

Franx, M., Labbé, I., Rudnick, G., van Dokkum, P. G., Daddi, E., Förster Schreiber, N. M.,

Moorwood, A., Rix, H.-W., et al. 2003, ApJ, 587, L79

Franx, M., Moorwood, A., Rix, H., Kuijken, K., Röttgering, H., van der Werf, P., van Dokkum, P.,

Labbe, I., et al. 2000, The Messenger, 99, 20

Frei, Z. & Gunn, J. E. 1994, AJ, 108, 1476

Fritze, U. 2004, A&A, 414, 515

Fritze, U. & Bicker, J. 2006, A&A, 454, 67

Fritze, U. & Burkert, A. 1995, A&A, 300, 58

Fritze, U. & Gerhard, O. E. 1994a, A&A, 285, 751

Fritze, U. & Gerhard, O. E. 1994b, A&A, 285, 775

Fritze, U., Krüger, H., Fricke, K. J., & Loose, H.-H. 1989, A&A, 224, L1

Fritze, U. & Lilly, T. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 374,

From Stars to Galaxies: Building the Pieces to Build Up the Universe, ed. A. Vallenari,

R. Tantalo, L. Portinari, & A. Moretti, 341–+

Fritze, U., Papaderos, P., Anders, P., Lilly, T., Cunow, B., Gallagher, J. 2006, in IAU Symposium,

Vol. 232, The Scientific Requirements for Extremely Large Telescopes, ed. P. Whitelock,

M. Dennefeld, & B. Leibundgut, 241–247

Galilei, G. 1610, Sidereus Nuncius (Galileo Galilei)

Ganda, K., Peletier, R. F., McDermid, R. M., Falcón-Barroso, J., de Zeeuw, P. T., Bacon, R.,

Cappellari, M., Davies, R. L., et al. 2007, MNRAS, 380, 506

Garcia Vargas, M. L. & Diaz, A. I. 1994, ApJS, 91, 553

http://adsabs.harvard.edu/abs/1998PASP..110..761F
http://adsabs.harvard.edu/abs/2001ApJS..135...41F
http://ukads.nottingham.ac.uk/abs/2003MNRAS.342.1215F
http://adsabs.harvard.edu/abs/1999ApJ...513...34F
http://adsabs.harvard.edu/abs/2006ApJS..164..334F
http://adsabs.harvard.edu/abs/2007ApJS..172..182F
http://adsabs.harvard.edu/abs/1997A%26A...326..950F
http://adsabs.harvard.edu/abs/2009MNRAS.397.1776F
http://adsabs.harvard.edu/abs/1997AJ....113.1652F
http://adsabs.harvard.edu/abs/2006AJ....131.1891F
http://adsabs.harvard.edu/abs/2004ApJ...616...40F
http://adsabs.harvard.edu/abs/2003ApJ...587L..79F
http://adsabs.harvard.edu/abs/2000Msngr..99...20F
http://adsabs.harvard.edu/abs/1994AJ....108.1476F
http://adsabs.harvard.edu/abs/2004A%26A...414..515F
http://adsabs.harvard.edu/abs/2006A%26A...454...67F
http://adsabs.harvard.edu/abs/1995A%26A...300...58F
http://adsabs.harvard.edu/abs/1994A%26A...285..751F
http://adsabs.harvard.edu/abs/1994A%26A...285..775F
http://ukads.nottingham.ac.uk/abs/1989A%26A...224L...1F
http://adsabs.harvard.edu/abs/2007MNRAS.380..506G
http://adsabs.harvard.edu/abs/1994ApJS...91..553G


Bibliography 241

Gauba, G., Parthasarathy, M., Nakada, Y., & Fujii, T. 2001, A&A, 373, 572

Gavazzi, G., Bonfanti, C., Sanvito, G., Boselli, A., & Scodeggio, M. 2002, ApJ, 576, 135

Gebhardt, K. & Kissler-Patig, M. 1999, AJ, 118, 1526

Geha, M., Guhathakurta, P., & van der Marel, R. P. 2005, AJ, 129, 2617

Georgakakis, A., Hopkins, A. M., Afonso, J., Sullivan, M., Mobasher, B., Cram, L. E. 2006,

MNRAS, 367, 331

Gerola, H. & Seiden, P. E. 1978, ApJ, 223, 129

Giacconi, R., Rosati, P., Tozzi, P., Borgani, S., Hasinger, G., Bergeron, J., Gilmozzi, R., Nonino,

M., et al. 2000, in Bulletin of the American Astronomical Society, Vol. 32, Bulletin of the

American Astronomical Society, 1562–+

Giavalisco, M. 2002, ARA&A, 40, 579

Gil de Paz, A., Boissier, S., Madore, B. F., Seibert, M., Joe, Y. H., Boselli, A., Wyder, T. K., Thilker,

D., et al. 2007, ApJS, 173, 185

Gil de Paz, A., Madore, B. F., Boissier, S., Swaters, R., Popescu, C. C., Tuffs, R. J., Sheth, K.,

Kennicutt, Jr., R. C., et al. 2005, ApJ, 627, L29

Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371

Glassman, T. M. & Larkin, J. E. 2000, ApJ, 539, 570

Gorgas, J., Faber, S. M., Burstein, D., Gonzalez, J. J., Courteau, S., Prosser, C. 1993, ApJS, 86, 153

Goto, T. 2004, A&A, 427, 125

Goto, T. 2005, MNRAS, 357, 937

Goto, T. 2007, MNRAS, 381, 187

Grazian, A., Fontana, A., de Santis, C., Nonino, M., Salimbeni, S., Giallongo, E., Cristiani, S.,

Gallozzi, S., et al. 2006, A&A, 449, 951

Grebel, E. K. 1997, in Reviews in Modern Astronomy, Vol. 10, Reviews in Modern Astronomy,

ed. R. E. Schielicke, 29–60

Greve, T. R., Bertoldi, F., Smail, I., Neri, R., Chapman, S. C., Blain, A. W., Ivison, R. J., Genzel, R.,

et al. 2005, MNRAS, 359, 1165

Guhathakurta, P., Tyson, J. A., & Majewski, S. R. 1990, ApJ, 357, L9

Guiderdoni, B. & Rocca-Volmerange, B. 1987, A&A, 186, 1

Gunn, J. E., Carr, M., Rockosi, C., Sekiguchi, M., Berry, K., Elms, B., de Haas, E., Ivezić, Ž., et al.
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Ivezić, Ž., Sesar, B., Jurić, M., Bond, N., Dalcanton, J., Rockosi, C. M., Yanny, B., Newberg, H. J.,

et al. 2008, ApJ, 684, 287

Iye, M., Ota, K., Kashikawa, N., Furusawa, H., Hashimoto, T., Hattori, T., Matsuda, Y., Mo-

rokuma, T., et al. 2006, Nature, 443, 186

Izotov, Y. I. & Thuan, T. X. 1998, ApJ, 500, 188

Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1994, ApJ, 435, 647

Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1997, ApJS, 108, 1

Jansen, R. A., Franx, M., & Fabricant, D. 2001, ApJ, 551, 825

Jog, C. J. & Chitre, A. 2002, A&A, 393, L89

Jones, L. R., Ponman, T. J., & Forbes, D. A. 2000, MNRAS, 312, 139

Juneau, S., Glazebrook, K., Crampton, D., McCarthy, P. J., Savaglio, S., Abraham, R., Carlberg,

R. G., Chen, H.-W., et al. 2005, ApJ, 619, L135

Kajisawa, M., Ichikawa, T., Tanaka, I., Konishi, M., Yamada, T., Akiyama, M., Suzuki, R., Tokoku,

C., et al. 2009, ApJ, 702, 1393

Kalirai, J. S., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., Richer, H. B. 2008, ApJ,

676, 594

Kant, I. 1755, Allgemeine Naturgeschichte und Theorie des Himmels (Immanuel Kant)

Kashikawa, N., Shimasaku, K., Yasuda, N., Ajiki, M., Akiyama, M., Ando, H., Aoki, K., Doi, M.,

et al. 2004, PASJ, 56, 1011

Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188

Kauffmann, G., Heckman, T. M., White, S. D. M., Charlot, S., Tremonti, C., Peng, E. W., Seibert,

M., Brinkmann, J., et al. 2003, MNRAS, 341, 54

Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264, 201

Kay, S. T., Pearce, F. R., Frenk, C. S., & Jenkins, A. 2002, MNRAS, 330, 113

Kennicutt, Jr., R. C. 1983, ApJ, 272, 54

Kennicutt, Jr., R. C. 1992, ApJS, 79, 255

Kennicutt, Jr., R. C. 1998, ARA&A, 36, 189

Kewley, L. J. & Dopita, M. A. 2002, ApJS, 142, 35

Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183

Kewley, L. J., Geller, M. J., & Jansen, R. A. 2004, AJ, 127, 2002

Kissler-Patig, M., Brodie, J. P., & Minniti, D. 2002, A&A, 391, 441

Kitzbichler, M. G. & White, S. D. M. 2007, MNRAS, 376, 2

Kodama, T., Bell, E. F., & Bower, R. G. 1999, MNRAS, 302, 152

Koekemoer, A. M., Aussel, H., Calzetti, D., Capak, P., Giavalisco, M., Kneib, J.-P., Leauthaud, A.,

Le Fèvre, O., et al. 2007, ApJS, 172, 196

http://adsabs.harvard.edu/abs/2008ApJ...684..287I
http://adsabs.harvard.edu/abs/2006Natur.443..186I
http://adsabs.harvard.edu/abs/1998ApJ...500..188I
http://adsabs.harvard.edu/abs/1994ApJ...435..647I
http://adsabs.harvard.edu/abs/1997ApJS..108....1I
http://ukads.nottingham.ac.uk/abs/2001ApJ...551..825J
http://adsabs.harvard.edu/abs/2002A%26A...393L..89J
http://adsabs.harvard.edu/abs/2000MNRAS.312..139J
http://adsabs.harvard.edu/abs/2005ApJ...619L.135J
http://adsabs.harvard.edu/abs/2009ApJ...702.1393K
http://adsabs.harvard.edu/abs/2008ApJ...676..594K
http://adsabs.harvard.edu/abs/2008ApJ...676..594K
http://adsabs.harvard.edu/abs/2004PASJ...56.1011K
http://adsabs.harvard.edu/abs/1999MNRAS.303..188K
http://adsabs.harvard.edu/abs/2003MNRAS.341...54K
http://adsabs.harvard.edu/abs/1993MNRAS.264..201K
http://adsabs.harvard.edu/abs/2002MNRAS.330..113K
http://adsabs.harvard.edu/abs/1983ApJ...272...54K
http://adsabs.harvard.edu/abs/1992ApJS...79..255K
http://adsabs.harvard.edu/abs/1998ARA%26A..36..189K
http://adsabs.harvard.edu/abs/2002ApJS..142...35K
http://adsabs.harvard.edu/abs/2008ApJ...681.1183K
http://ukads.nottingham.ac.uk/abs/2004AJ....127.2002K
http://adsabs.harvard.edu/abs/2002A%26A...391..441K
http://adsabs.harvard.edu/abs/2007MNRAS.376....2K
http://adsabs.harvard.edu/abs/1999MNRAS.302..152K
http://ads.ari.uni-heidelberg.de/abs/2007ApJS..172..196K


244 Bibliography

Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., Jarosik, N., Larson,

D., et al. 2009, ApJS, 180, 330

Kong, X., Daddi, E., Arimoto, N., Renzini, A., Broadhurst, T., Cimatti, A., Ikuta, C., Ohta, K.,

et al. 2006, ApJ, 638, 72

Koo, D. C. 1985, AJ, 90, 418

Korn, A. J., Maraston, C., & Thomas, D. 2005, A&A, 438, 685

Kotulla, R., Fritze, U., & Gallagher, III, J. S. 2008, ApJ, 688, L65

Kotulla, R., Fritze, U., Weilbacher, P., & Anders, P. 2009, MNRAS, 396, 462

Kriek, M., van Dokkum, P. G., Franx, M., Förster Schreiber, N. M., Gawiser, E., Illingworth,

G. D., Labbé, I., Marchesini, D., et al. 2006, ApJ, 645, 44

Kriek, M., van Dokkum, P. G., Labbé, I., Franx, M., Illingworth, G. D., Marchesini, D., Quadri,

R. F. 2009, ApJ, 700, 221

Krist, J. 2004, TinyTim User’s Manual, Available at http://www.stsci. edu/software/tinytim, 6th

edn.

Kroupa, P. 2001, MNRAS, 322, 231

Krüger, H. & Fritze, U. 1994, A&A, 284, 793

Krüger, H., Fritze, U., Fricke, K. J., & Loose, H.-H. 1992, A&A, 259, L73

Krüger, H., Fritze, U., Fricke, K. J., & Loose, H.-H. 1993, Ap&SS, 205, 57

Krüger, H., Fritze, U., & Loose, H.-H. 1995, A&A, 303, 41

Krüger, H., Fritze, U., Loose, H.-H., & Fricke, K. J. 1991, A&A, 242, 343

Krumholz, M. R. & McKee, C. F. 2008, Nature, 451, 1082

Kundu, A. & Whitmore, B. C. 2001a, AJ, 121, 2950

Kundu, A. & Whitmore, B. C. 2001b, AJ, 122, 1251

Kurth, O. M., Fritze, U., & Fricke, K. J. 1999, A&AS, 138, 19

Kurucz, R. L. 1992, in IAU Symposium, Vol. 149, The Stellar Populations of Galaxies, ed. B. Bar-

buy & A. Renzini, 225–+

Kučinskas, A., Hauschildt, P. H., Brott, I., Vansevičius, V., Lindegren, L., Tanabé, T., Allard, F.
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